Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34945540

RESUMO

Seaweeds are potentially sustainable crops and are receiving significant interest because of their rich bioactive compound content; including fatty acids, polyphenols, carotenoids, and complex polysaccharides. However, there is little information on the in vivo effects on gut health of the polysaccharides and their low-molecular-weight derivatives. Herein, we describe the first investigation into the prebiotic potential of low-molecular-weight polysaccharides (LMWPs) derived from alginate and agar in order to validate their in vivo efficacy. We conducted a randomized; placebo-controlled trial testing the impact of alginate and agar LWMPs on faecal weight and other markers of gut health and on composition of gut microbiota. We show that these LMWPs led to significantly increased faecal bulk (20-30%). Analysis of gut microbiome composition by sequencing indicated no significant changes attributable to treatment at the phylum and family level, although FISH analysis showed an increase in Faecalibacterium prausnitzii in subjects consuming agar LMWP. Sequence analysis of gut bacteria corroborated with the FISH data, indicating that alginate and agar LWMPs do not alter human gut microbiome health markers. Crucially, our findings suggest an urgent need for robust and rigorous human in vivo testing-in particular, using refined seaweed extracts.

2.
Am J Clin Nutr ; 108(4): 688-700, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321272

RESUMO

Background: Epidemiologic evidence suggests that a diet rich in (poly)phenols has beneficial effects on many chronic diseases. Brown seaweed is a rich source of (poly)phenols. Objective: The aim of this study was to investigate the bioavailability and effect of a brown seaweed (Ascophyllum nodosum) (poly)phenol extract on DNA damage, oxidative stress, and inflammation in vivo. Design: A randomized, double-blind, placebo-controlled crossover trial was conducted in 80 participants aged 30-65 y with a body mass index (in kg/m2) ≥25. The participants consumed either a 400-mg capsule containing 100 mg seaweed (poly)phenol and 300 mg maltodextrin or a 400-mg maltodextrin placebo control capsule daily for an 8-wk period. Bioactivity was assessed with a panel of blood-based markers including lymphocyte DNA damage, plasma oxidant capacity, C-reactive protein (CRP), and inflammatory cytokines. To explore the bioavailability of seaweed phenolics, an untargeted metabolomics analysis of urine and plasma samples after seaweed consumption was determined by ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Results: Consumption of the seaweed (poly)phenols resulted in a modest decrease in DNA damage but only in a subset of the total population who were obese. There were no significant changes in CRP, antioxidant status, or inflammatory cytokines. We identified phlorotannin metabolites that are considered potential biomarkers of seaweed consumption including pyrogallol/phloroglucinol-sulfate, hydroxytrifurahol A-glucuronide, dioxinodehydroeckol-glucuronide, diphlorethol sulfates, C-O-C dimer of phloroglucinol sulfate, and C-O-C dimer of phloroglucinol. Conclusions: To the best of our knowledge, this work represents the first comprehensive study investigating the bioactivity and bioavailability of seaweed (poly)phenolics in human participants. We identified several potential biomarkers of seaweed consumption. Intriguingly, the modest improvements in DNA damage were observed only in the obese subset of the total population. The subgroup analysis should be considered exploratory because it was not preplanned; therefore, it was not powered adequately. Elucidation of the biology underpinning this observation will require participant stratification according to weight in future studies. This trial was registered at clinicaltrials.gov as NCT02295878.


Assuntos
Antioxidantes/farmacologia , Ascophyllum/química , Dano ao DNA/efeitos dos fármacos , Dieta , Obesidade , Polifenóis/farmacologia , Alga Marinha/química , Adulto , Idoso , Disponibilidade Biológica , Proteína C-Reativa/metabolismo , Estudos Cross-Over , Citocinas/sangue , Método Duplo-Cego , Feminino , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Sobrepeso , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Taninos/sangue , Taninos/farmacologia
3.
Mol Nutr Food Res ; 61(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28718977

RESUMO

SCOPE: Unlike other classes of polyphenols, there is a lack of knowledge regarding brown seaweed phlorotannins and their bioactivity. We investigated the impact of in vitro gastrointestinal digestion and colonic fermentation on the bioactivity of a seaweed phlorotannin extract from Ascophyllum nodosum and its high molecular weight (HMW) and low molecular weight (LMW) fractions. METHODS AND RESULTS: The highest phlorotannin and total polyphenol (TP) concentration was observed in the HMW fraction. Antioxidant capacity broadly followed phlorotannin and TP levels, with HMW having the highest activity. Both gastrointestinal digestion (GID) and colonic fermentation (CF) significantly affected phlorotannin and TP levels, and antioxidant capacity of the extract and fractions. Despite this, in HT-29 cells, all GID extracts significantly inhibit cell growth, whereas CF extracts effectively counteracted H2 O2 induced DNA damage. CONCLUSION: Although phlorotannins, TP levels and antioxidant power of the extracts were strongly reduced after in vitro digestion and fermentation, their anti-genotoxic activity and cell growth inhibitory effect in colon HT-29 cells was maintained and enhanced. HMW was the most effective fraction, indicating that the high molecular weight phlorotannins potentially exert a stronger beneficial effect in the colon.


Assuntos
Ascophyllum/química , Misturas Complexas/metabolismo , Digestão , Microbioma Gastrointestinal , Polifenóis/metabolismo , Alga Marinha/química , Taninos/metabolismo , Anticarcinógenos/análise , Anticarcinógenos/química , Anticarcinógenos/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Ásia , Técnicas de Cultura Celular por Lotes , Proliferação de Células , Colo/enzimologia , Colo/metabolismo , Colo/microbiologia , Misturas Complexas/química , Suplementos Nutricionais/análise , Etnofarmacologia , Fermentação , Células HT29 , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Peso Molecular , Polifenóis/análise , Polifenóis/química , Taninos/análise , Taninos/química
4.
Br J Nutr ; 115(7): 1240-53, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26879487

RESUMO

Brown seaweeds such as Ascophyllum nodosum are a rich source of phlorotannins (oligomers and polymers of phloroglucinol units), a class of polyphenols that are unique to Phaeophyceae. At present, there is no information on the bioavailability of seaweed polyphenols and limited evidence on their bioactivity in vivo. Consequently, we investigated the gastrointestinal modifications in vitro of seaweed phlorotannins from A. nodosum and their bioavailability and effect on inflammatory markers in healthy participants. In vitro, some phlorotannin oligomers were identified after digestion and colonic fermentation. In addition, seven metabolites corresponding to in vitro-absorbed metabolites were identified. Urine and plasma samples contained a variety of metabolites attributed to both unconjugated and conjugated metabolites (glucuronides and/or sulphates). In both urine and plasma, the majority of the metabolites were found in samples collected at late time points (6-24 h), suggesting colonic metabolism of high-molecular-weight phlorotannins, with three phlorotannin oligomers (hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol) identified in urine samples. A significant increase of the cytokine IL-8 was also observed. Our study shows for the first time that seaweed phlorotannins are metabolised and absorbed, predominantly in the large intestine, and there is a large inter-individual variation in their metabolic profile. Three phlorotannin oligomers present in the capsule are excreted in urine. Our study is the first investigation of the metabolism and bioavailability of seaweed phlorotannins and the role of colonic biotransformation. In addition, IL-8 is a possible target for phlorotannin bioactivity.


Assuntos
Trato Gastrointestinal/metabolismo , Inflamação , Phaeophyceae/química , Floroglucinol/metabolismo , Floroglucinol/farmacocinética , Adolescente , Adulto , Idoso , Disponibilidade Biológica , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Citocinas/sangue , Digestão , Feminino , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Fenóis/sangue , Fenóis/urina , Floroglucinol/farmacologia , Polímeros/metabolismo , Polímeros/farmacocinética
5.
Anaerobe ; 18(1): 1-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21924371

RESUMO

Fermentation properties and prebiotic potential of novel low molecular weight polysaccharides (LMWPs) derived from agar and alginate bearing seaweeds was investigated. Ten LMWPs were supplemented to pH, temperature controlled anaerobic batch cultures inoculated with human feces from three donors, in triplicate. Microbiota changes were monitored using Fluorescent in-situ hybridization and short chain fatty acids, the fermentation end products were analysed using gas chromatography. Of the ten LMWPs tested, Gelidium seaweed CC2253 of molecular weight 64.64 KDa showed a significant increase in bifidobacterial populations from log(10) 8.06 at 0 h to log(10) 8.55 at 24 h (p = 0.018). For total bacterial populations, alginate powder CC2238 produced a significant increase from log(10) 9.01 at 0 h to log(10) 9.58 at 24 h (p = 0.032). No changes were observed in the other bacterial groups tested viz. Bacteroides, Lactobacilli/Enterococci, Eubacterium rectale/Clostridium coccoides and Clostridium histolyticum. The polysaccharides also showed significant increases in total SCFA production, particularly acetic and propionic acids, indicating that they were readily fermented. In conclusion, some LMWPs derived from agar and alginate bearing seaweeds were fermented by gut bacteria and exhibited potential to be used a novel source of prebiotics.


Assuntos
Ágar/química , Fermentação , Polissacarídeos/química , Prebióticos , Alga Marinha/química , Adulto , Técnicas de Cultura Celular por Lotes , Ácidos Graxos Voláteis/biossíntese , Fezes/química , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Metagenoma , Peso Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...