Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6733-6743, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38418379

RESUMO

Chiral covalent organic frameworks (CCOFs) have attracted extensive interest for their potential applications in various enantioselective processes. However, the exploitation of chirality-induced spin selectivity (CISS) that enables a new technology for the injection of spin polarized current without the need for a permanent magnetic layer within CCOFs remains a largely untapped area of research. Here, we demonstrate that, for the first time, COFs can be an attractive platform to develop spin filter materials with efficient CISS. This facilitates the design and synthesis of a new family of Zn(salen)-based 2D CCOFs, namely, CCOFs-9-12, by imine condensation of chiral 1,2-diaminocyclohexane and tri- or tetra(salicylaldehyde) derivatives. CCOF-9, distinguished by its unique C2 symmetric "armchair" tetrasubstituted pyrene conformation, exhibits the most pronounced chirality among these materials and serves as a solid-state host, enabling the enantioselective adsorption of racemic drugs with an enantiomeric excess (ee) of up to 97%. After substituting diamagnetic zinc(II) ions for paramagnetic cobalt(II), the resulting CCOF-9-Co not only retains its high crystallinity, porosity, and exceptional chirality but also exhibits enhanced conductivity, a crucial factor for the effective observation of CISS. Magnetic conductive atomic force microscopy showed that CCOF-9-Co exhibited a remarkable CISS effect with up to an 88-94% spin polarization ratio. This phenomenon is further confirmed by the increased intensity in the magnetic circular dichroism (MCD) when CCOF-9-Co is under an external magnetic field. This work therefore shows the tremendous potential of CCOFs for controlling spin selectivity and will stimulate the creation of new types of crystalline polymers with strong CISS effects for spin filters.

2.
Phys Chem Chem Phys ; 25(19): 13265-13274, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36924456

RESUMO

Inspired by the requirements of miniaturization and multifunction of molecular devices, we investigate the quantum transport properties of three unique molecular devices with silicon carbide chains bridging gold electrodes by an ab initio approach. The pronounced quantum effects, including the oscillation of charge, conductance, and current, together with the negative differential resistance (NDR), have been observed simultaneously over a wide region in the double-chain device. It changes the regular situation that these two effects usually emerge in single-chain systems at the same time. Inspections of the visible differences in the transport behaviors relevant to length and bias between the three devices further evidence that the interchain interaction and molecule-electrode coupling are decisive factors for achieving the quantum effects of oscillation and NDR. These two factors can improve electronic transport capability through enhancing transmission, strengthening the delocalization of frontier molecular orbitals, and reducing potential barriers. Our results not only lay a solid foundation for the application of silicon carbide chains in the miniaturized and multifunctional molecular devices with good performance, but also provide an efficient way to the continuing search for materials with multiple controllable quantum effects in nanoelectronics.

3.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603497

RESUMO

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Assuntos
Reprodutibilidade dos Testes , Adsorção , Porosidade
4.
J Am Chem Soc ; 143(1): 369-381, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356183

RESUMO

While crystalline covalent organic frameworks (COFs) linked by C-C bonds are highly desired in synthetic chemistry, it remains a formidable challenge to synthesize. Efforts to generate C-C single bonds in COFs via de novo synthesis usually afford amorphous structures rather than crystalline phases. We demonstrate here that C-C single bond-based COFs can be prepared by direct reduction of C═C bond-linked frameworks via crystal-to-crystal transformation. By Knoevenagel polycondensation of chiral tetrabenzaldehyde of dibinaphthyl-22-crown-6 with 1,4-phenylenediacetonitrile or 4,4'-biphenyldiacetonitrile, two olefin-linked chiral COFs with 2D layered tetragonal structure are prepared. Reduction of olefin linkages of the as-prepared CCOFs produces two C-C single bond linked frameworks, which retains high crystallinity and porosity as well as high chemical stability in both strong acids and bases. The quantitative reduction is confirmed by Fourier transform infrared and cross-polarization magic angle spinning 13C NMR spectroscopy. Compared to the pristine structures, the reduced CCOFs display blue-shifted emission with enhanced quantum yields and fluorescence lifetimes, while the parent CCOFs exhibit higher enantioselectivity than the reduced analogs when be used as fluorescent sensors to detect chiral amino alcohols via supramolecular interactions with the built-in crown ether moieties. This work provides an attractive strategy for making chemically stable functionalized COFs with new linkages that are otherwise hard to produce.

5.
Angew Chem Int Ed Engl ; 60(11): 6086-6093, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295124

RESUMO

3D covalent organic frameworks (COFs) with well-defined porous channels are shown to be capable of inducing chiral molecular catalysts from non-enantioselective to highly enantioselective in catalyzing organic transformations. By condensations of a tetrahedral tetraamine and two linear dialdehydes derived from enantiopure 1,1'-binaphthol (BINOL), two chiral 3D COFs with a 9-fold or 11-fold interpenetrated diamondoid framework are prepared. Enhanced Brønsted acidity was observed for the chiral BINOL units that are uniformly distributed within the tubular channels compared to the non-immobilized acids. This facilitates the Brønsted acid catalysis of cyclocondensation of aldehydes and anthranilamides to produce 2,3-dihydroquinazolinones. DFT calculations show the COF catalyst provides preferential secondary interactions between the substrate and framework to induce enantioselectivities that are not achievable in homogeneous systems.

6.
Chem Soc Rev ; 49(17): 6248-6272, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32724943

RESUMO

Covalent organic frameworks (COFs) are constructed using reticular chemistry with the building blocks being connected via covalent bonds and have emerged as a new series of porous materials for multitudinous applications. Most COFs reported to date are achiral, and only a small fraction of COFs with chiral nature are reported. This review covers the recent advances in the field of chiral COFs (CCOFs), including their design principles and synthetic strategies, structural studies, and potential applications in asymmetric catalysis, enantioselective separation, and chiral recognition. Finally, we illustrate the remaining challenges and future opportunities in this field.

7.
Angew Chem Int Ed Engl ; 58(41): 14748-14757, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31389142

RESUMO

Chiral phosphoric acids are incorporated into indium-based metal-organic frameworks (In-MOFs) by sterically preventing them from coordination. This concept leads to the synthesis of three chiral porous 3D In-MOFs with different network topologies constructed from three enantiopure 1,1'-biphenol-phosphoric acid derived tetracarboxylate linkers. More importantly, all the uncoordinated phosphoric acid groups are periodically aligned within the channels and display significantly enhanced acidity compared to the non-immobilized acids. This facilitates the Brønsted acid catalysis of asymmetric condensation/amine addition and imine reduction. The enantioselectivities can be tuned (up to >99 % ee) by varying the substituents to achieve a nearly linear correlation with the concentrations of steric bulky groups in the MOFs. DFT calculations suggest that the framework provides a chiral confined microenvironment that dictates both selectivity and reactivity of chiral MOFs.

8.
Opt Express ; 27(6): 8361-8374, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052655

RESUMO

The squeezing transfer from a squeezed vacuum injected in one cavity to the output spectrum of the other cavity in an optomechanical system is investigated. By calculating the noise spectrum of the output field, it is found that two squeezing dips appear symmetrically located about the resonant point. Besides the contribution from the destructive interference between the noise fluctuation of the input field and its optomechanically modified one, the major part of the squeezing is transferred from the squeezed vacuum injected in the cavity. Additionally, it is shown that the adverse effects of the environment temperature on the output spectrum can be strongly suppressed by the injected squeezed field. This study can be useful in quantum communications via the optomechanical interface.

9.
J Am Chem Soc ; 139(38): 13476-13482, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28870069

RESUMO

A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn2L(H2O)2] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF3-containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

10.
J Sep Sci ; 37(15): 1996-2001, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24824837

RESUMO

A dispersive liquid-liquid microextraction method based on the solidification of floating organic droplets was developed as a simple and sensitive method for the simultaneous determination of the concentrations of multiple fungicides (triazolone, chlorothalonil, cyprodinil, and trifloxystrobin) in water by high-performance liquid chromatography with variable-wavelength detection. After an approach varying one factor at a time was used, an orthogonal array design [L25 (5(5))] was employed to optimize the method and to determine the interactions between the parameters. The significance of the effects of the different factors was determined using analysis of variance. The results indicated that the extraction solvent volume significantly affects the efficiency of the extraction. Under optimal conditions, the relative standard deviation (n = 5) varied from 2.3 to 5.5% at 0.1 µg/mL for each analyte. Low limits of detection were obtained and ranged from 0.02 to 0.2 ng/mL. In addition, the proposed method was applied to the analysis of fungicides in real water samples. The results show that the dispersive liquid-liquid microextraction based on the solidification of floating organic droplets is a potential method for detecting fungicides in environmental water samples, with recoveries of the target analytes ranging from 70.1 to 102.5%.


Assuntos
Fungicidas Industriais/análise , Fungicidas Industriais/isolamento & purificação , Microextração em Fase Líquida/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Água Doce/química , Microextração em Fase Líquida/instrumentação , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...