Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(5): 1565-1579, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976240

RESUMO

Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnaporthe , Oryza , Resistência à Doença/genética , Complexo Antígeno-Anticorpo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Magnaporthe/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992695

RESUMO

The exocyst, an evolutionarily conserved octameric protein complex, mediates tethering of vesicles to the plasma membrane in the early stage of exocytosis. Arabidopsis Exo70, a subunit of the exocyst complex, has been found to be involved in plant immunity. Here, we characterize the function of OsExo70B1 in rice. OsExo70B1 mainly expresses in leaf and shoot and its expression is induced by pathogen-associated molecular patterns (PAMPs) and rice blast fungus Magnaporthe oryzae (M. oryzae). Knocking out OsExo70B1 results in significantly decreased resistance and defense responses to M. oryzae compared to the wild type, including more disease lesions and enhanced fungal growth, downregulated expression of pathogenesis-related (PR) genes, and decreased reactive oxygen species accumulation. In contrast, the exo70B1 mutant does not show any defects in growth and development. Furthermore, OsExo70B1 can interact with the receptor-like kinase OsCERK1, an essential component for chitin reception in rice. Taken together, our data demonstrate that OsExo70B1 functions as an important regulator in rice immunity.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Transporte Vesicular/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...