Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Neurobiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874704

RESUMO

Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.

2.
Neurochem Int ; 178: 105788, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843953

RESUMO

Neuroinflammation is a major driver of postoperative cognitive dysfunction (POCD). The cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signaling is a prominent alarming device for aberrant double-stranded DNA (dsDNA) that has emerged as a key mediator of neuroinflammation in cognitive-related diseases. However, the role of the cGAS-STING pathway in the pathogenesis of POCD remains unclear. A POCD model was developed in male C57BL/6J mice by laparotomy under isoflurane (Iso) anesthesia. The cGAS inhibitor RU.521 and caspase-3 agonist Raptinal were delivered by intraperitoneal administration. BV2 cells were exposed to Iso and lipopolysaccharide (LPS) in the absence or presence of RU.521, and then cocultured with HT22 cells in the absence or presence of Raptinal. Cognitive function was assessed using the Morris water maze test and novel object recognition test. Immunofluorescence assays were used to observe the colocalization of dsDNA and cGAS. The downstream proteins and pro-inflammatory cytokines were detected using the Western blot and enzyme-linked immunosorbent assay (ELISA). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assess the degree of cell death in the hippocampus following anesthesia/surgery treatment. Isoflurane/laparotomy and Iso + LPS significantly augmented the levels of cGAS in the hippocampus and BV2 cells, accompanied by mislocalized dsDNA accumulation in the cytoplasm. RU.521 alleviated cognitive impairment, diminished the levels of 2'3'-cGAMP, cGAS, STING, phosphorylated NF-κB p65 and NF-κB-pertinent pro-inflammatory cytokines (TNFα and IL-6), and repressed pyroptosis-associated elements containing cleaved caspase-3, N-GSDME, IL-1ß and IL-18. These phenotypes could be rescued by Raptinal in vivo and in vitro. These findings suggest that pharmacological inhibition of cGAS mitigates neuroinflammatory burden of POCD by dampening caspase-3/GSDME-dependent pyroptosis, providing a potential therapeutic strategy for POCD.

3.
Mol Neurobiol ; 61(8): 5802-5813, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38231323

RESUMO

Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.


Assuntos
Encéfalo , Ritmo Circadiano , Ácido Láctico , Fígado , Animais , Ritmo Circadiano/fisiologia , Ácido Láctico/metabolismo , Cinética , Masculino , Encéfalo/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Ressonância Magnética/métodos , Privação do Sono/metabolismo
4.
Neural Regen Res ; 19(9): 2019-2026, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227531

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00034/figure1/v/2024-01-16T170235Z/r/image-tiff Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.

5.
Cell Commun Signal ; 21(1): 356, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102610

RESUMO

BACKGROUND: Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS: We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS: Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS: In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.


Assuntos
Neuroblastoma , Complicações Cognitivas Pós-Operatórias , Humanos , Camundongos , Animais , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/patologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Caspase 3/metabolismo , Proteínas Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Neurônios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Biomedicines ; 11(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37238930

RESUMO

(1) SAH induces cellular stress and endoplasmic reticulum stress, activating the unfolded protein response (UPR) in nerve cells. IRE1 (inositol-requiring enzyme 1) is a protein that plays a critical role in cellular stress response. Its final product, Xbp1s, is essential for adapting to changes in the external environment. This process helps maintain proper cellular function in response to various stressors. O-GlcNAcylation, a means of protein modification, has been found to be involved in SAH pathophysiology. SAH can increase the acute O-GlcNAcylation level of nerve cells, which enhances the stress capacity of nerve cells. The GFAT1 enzyme regulates the level of O-GlcNAc modification in cells, which could be a potential target for neuroprotection in SAH. Investigating the IRE1/XBP1s/GFAT1 axis could offer a promising avenue for future research. (2) Methods: SAH was induced using a suture to perforate an artery in mice. HT22 cells with Xbp1 loss- and gain-of-function in neurons were generated. Thiamet-G was used to increase O-GlcNAcylation; (3) Results: Severe neuroinflammation caused by subarachnoid hemorrhage leads to extensive endoplasmic reticulum stress of nerve cells. Xbp1s, the final product of unfolded proteins induced by endoplasmic reticulum stress, can induce the expression of the hexosamine pathway rate limiting enzyme GFAT1, increase the level of O-GlcNAc modification of cells, and have a protective effect on neural cells; (4) Conclusions: The correlation between Xbp1s displayed by immunohistochemistry and O-GlcNAc modification suggests that the IRE1/XBP1 branch of unfolded protein reaction plays a key role in subarachnoid hemorrhage. IRE1/XBP1 branch is a new idea to regulate protein glycosylation modification, and provides a promising strategy for clinical perioperative prevention and treatment of subarachnoid hemorrhage.

7.
ACS Chem Neurosci ; 14(7): 1249-1260, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946264

RESUMO

PTEN-induced kinase 1 (PINK1)-mediated mitophagy and caspase-1/gasdermin D canonical pyroptosis pathways have been implicated in the pathogenesis of postoperative cognitive dysfunction (POCD). However, gasdermin E (GSDME), another recently identified executioner of pyroptosis that can be specifically cleaved by caspase-3, is highly expressed in the brain and neurons. This study aimed to ascertain whether PINK1-dependent mitophagy governs postoperative cognitive capacity through caspase-3/GSDME. Twelve month old male Sprague-Dawley rats underwent exploratory laparotomy under isoflurane anesthesia. Lipopolysaccharide (LPS)-primed SH-SY5Y cells were used to mimic postsurgical neuroinflammation. For the interventional study, rats were administered with adeno-associated virus serotype 9 (AAV9)-mediated silencing of Pink1 and/or caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC). SH-SY5Y cells were treated with siPINK1 and/or Ac-DC. Cognitive performance was assessed using the Morris water maze test. The mitophagy- and pyroptosis-related parameters were determined in the hippocampus and SH-SY5Y cells. Anesthesia/surgery and LPS caused defective PINK1-mediated mitophagy and activation of caspase-3/GSDME-dependent pyroptosis. AAV-9 mediated Pink1 overexpression mitigated cognitive impairment and caspase-3/GSDME-dependent pyroptosis. Conversely, inhibition of PINK1 aggravates POCD and overactivates neuronal pyroptosis. These abnormalities were rescued by Ac-DC treatment. Collectively, PINK1-mediated mitophagy regulates anesthesia and surgery-induced cognitive impairment by negatively affecting the caspase-3/GSDME pyroptosis pathway, which provides a promising therapeutic target for POCD.


Assuntos
Neuroblastoma , Complicações Cognitivas Pós-Operatórias , Animais , Humanos , Masculino , Ratos , Caspase 3/metabolismo , Gasderminas , Lipopolissacarídeos , Mitofagia , Proteínas Quinases/metabolismo , Piroptose , Ratos Sprague-Dawley
8.
Thorac Cancer ; 14(11): 1036-1041, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36810856

RESUMO

The transformation from non-small-cell lung cancer (NSCLC) to small-cell lung cancer (SCLC) is one of the mechanisms of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) resistance. Previous studies exhibited that the median transformation time was 17.8 months for NSCLC to SCLC. Here we introduced a case of lung adenocarcinoma (LADC) with EGFR19 exon deletion mutation in which the pathological transformation emerged only 1 month after lung cancer surgery and receiving EGFR-TKI inhibitor. Eventually, the pathological examination confirmed the patient experienced a transformation from LADC to SCLC with EGFR, tumor protein p53 (TP53), RB transcriptional corepressor 1 (RB1), and SRY-box transcription factor 2 (SOX2) mutation. Although the transformation of LADC with EGFR-mutant into SCLC after targeted therapy was frequent, the pathological results of most patients were only biopsy specimens, which cannot rule out the existence of mixed pathological components of the primary tumor. In this case, the patient's postoperative pathology was sufficient to exclude the probability of mixed tumor components, confirming that the patient's pathological change was indeed transformation from LADC to SCLC. In addition, primary drug resistance in such a short time after surgery and osimertinib-targeted therapy has not been reported before. We detected the molecular state of this patient before and after SCLC transformation through targeted gene capture and high-throughput sequencing, and also found for the first time that the mutations of EGFR, TP53, RB1, and SOX2 continue to exist before and after transformation, but the mutation abundance is different. In our paper, the occurrence of small-cell transformation is affected largely by these gene mutations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/genética , Receptores ErbB , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Mutação , Fatores de Transcrição SOXB1/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Retinoblastoma/genética
9.
Front Mol Neurosci ; 15: 965697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299862

RESUMO

Major depression (MD) is a severe mental illness that creates a heavy social burden, and the potential molecular mechanisms remain largely unknown. Lots of research demonstrate that the olfactory bulb is associated with MD. Recently, gas chromatography-mass spectrometry-based metabolomic studies on depressive rats indicated that metabolisms of purine and lipids were disordered in the olfactory bulb. With various physicochemical properties and extensive concentration ranges, a single analytical technique could not completely cover all metabolites, hence it is necessary to adopt another metabolomic technique to seek new biomarkers or molecular mechanisms for depression. Therefore, we adopted a liquid chromatography-mass spectrometry metabonomic technique in the chronic mild stress (CMS) model to investigate significant metabolic changes in the olfactory bulb of the mice. We discovered and identified 16 differential metabolites in the olfactory bulb of the CMS treatments. Metabolic pathway analysis by MetaboAnalyst 5.0 was generated according to the differential metabolites, which indicated that the tryptophan metabolism pathway was the core pathogenesis in the olfactory bulb of the CMS depression model. Further, the expressions of tryptophan hydroxylase (TpH) and aromatic amino acid decarboxylase (AAAD) were detected by western blotting and immunofluorescence staining. The expression of TpH was increased after CMS treatment, and the level of AAAD was unaltered. These results revealed that abnormal metabolism of the tryptophan pathway in the olfactory bulb mediated the occurrence of MD.

10.
Plant Physiol Biochem ; 190: 174-183, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116226

RESUMO

'Docteur Jules Guyot' pears were immersed in acibenzolar-S-methyl (ASM) and 0.01 mol L-1 ethyl glycol tetra acetic acid (EGTA) to investigate the changes of Ca2+ receptor proteins and phenylpropanoid pathway. Results showed that ASM treatment increased the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate coenzyme A ligase (4CL), polyphenol oxidase (PPO), and cinnamyl alcohol dehydrogenase (CAD) in the exocarp of pears, whereas EGTA pre-treatment inhibited the activities of these enzymes. ASM treatment also enhanced the transcription of PcPAL, PcC4H, Pc4CL, PcC3H, PcCOMT, PcCCoAOMT, PcCCR, PcPOD, PcCDPK1, PcCDPK2, PcCDPK5, PcCDPK11, PcCDPK13, PcCBL1, PcCBL9, PcCIPK14, and PcCML27 in pears. EGTA + ASM treatments inhibited the transcription of PcPAL, PcC4H, Pc4CL, PcC3H, PcCCR, PcF5H, PcCAD, PcCDPK11, PcCDPK26, PcCDPK32, PcCBL1, PcCIPK14, PcCIPK23, and PcCaM in the fruit. All these results indicated that ASM induced the gene expressions of Ca2+ receptor proteins, the key enzyme activities and gene expressions in phenylpropanoid pathway; Ca2+ mediated phenylpropane metabolism in pears after ASM treatment.


Assuntos
Pyrus , Cálcio , Catecol Oxidase , Cinamatos , Coenzima A Ligases/metabolismo , Ácido Egtázico , Glicóis , Lignina/genética , Fenilalanina Amônia-Liase/metabolismo , Pyrus/metabolismo , Tiadiazóis , Transcinamato 4-Mono-Oxigenase/metabolismo
11.
Transl Cancer Res ; 11(6): 1795-1805, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836513

RESUMO

Background: Head and neck cancer (HNC) comprises a heterogeneous group of cancers. In view of the distinct biological characteristics and treatment strategies, clinical physicians require high-quality clinical practice guidelines (CPGs) which could provide reliable recommendations on medical practices. We aimed to evaluate the reporting quality of CPGs in the field of HNC. Methods: We developed rigorous search strategies before searching the domestic and international literature databases (n=568) including Medline (via PubMed), Chinese National Knowledge Infrastructure (CNKI) and Wanfang as well as websites of guideline organizations (n=8) published between January 1, 2018 to July 1, 2021 for appropriate guidelines on HNC. We included all evidence-based guidelines about HNC in English or Chinese. We excluded translations, summaries and interpretations of guidelines, as well as older versions of guidelines if an updated edition was available. Data were extracted and the reporting quality was evaluated by two investigators independently guided by the Reporting Items for Practice Guidelines in Healthcare (RIGHT) checklist. Results: A total of 21 guidelines complied with the inclusion criteria. Items show distinctions with reporting proportions among seven RIGHT domains. The proportions of reported items in each RIGHT domain were 75.4% for basic information, 63.1% for background, 42.9% for evidence, 55.1% for recommendations, 42.9% for review and quality assurance, 26.2% for funding and declaration and management of interests, and 50.8% for other information. Discussion: The average reporting quality of the recently published guidelines for HNC was moderate. Our research would help optimize the development processes of guidelines, resulting in high-quality guidelines for healthcare professionals.

12.
Nat Commun ; 13(1): 4392, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906218

RESUMO

Broad-spectrum resistance has great values for crop breeding. However, its mechanisms are largely unknown. Here, we report the cloning of a maize NLR gene, RppK, for resistance against southern corn rust (SCR) and its cognate Avr gene, AvrRppK, from Puccinia polysora (the causal pathogen of SCR). The AvrRppK gene has no sequence variation in all examined isolates. It has high expression level during infection and can suppress pattern-triggered immunity (PTI). Further, the introgression of RppK into maize inbred lines and hybrids enhances resistance against multiple isolates of P. polysora, thereby increasing yield in the presence of SCR. Together, we show that RppK is involved in resistance against multiple P. polysora isolates and it can recognize AvrRppK, which is broadly distributed and conserved in P. polysora isolates.


Assuntos
Basidiomycota , Zea mays , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Zea mays/genética
13.
Biomark Res ; 10(1): 21, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418149

RESUMO

Platinum-based chemotherapy was previously the first-choice treatment for lung cancer. The discovery of epidermal growth factor receptor (EGFR) gene mutations and the development of EGFR tyrosine kinase inhibitors (TKIs) marked the beginning of the targeted therapy era for non-small-cell lung cancer (NSCLC). Thirty percent of NSCLC patients carry EGFR gene mutations. For these advanced NSCLC patients, EGFR-TKIs are currently preferred for their superior activity and survival benefits over platinum-based chemotherapy. However, therapeutic efficacy is quite different in patients with EGFR exon 20 insertion (ex20ins) mutations versus common mutations. Patients with ex20ins mutations are insensitive to EGFR-TKIs and have poor prognosis. Some drugs targeting EGFR ex20ins mutations have been approved. Here, we systematically reviewed the recent clinical research of and treatments used for EGFR ex20ins mutations, summarized the latest data on emerging therapies, and discussed future prospects and treatments.

14.
J Sci Food Agric ; 102(11): 4435-4445, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35092628

RESUMO

BACKGROUND: Acibenzolar-S-methyl (ASM), a well-known plant activator, has been used to protect fruit and vegetable from fungal invasion and maintain quality. However, little is known about the molecular mechanism of ASM in regulating chlorophyll and carotenoid metabolisms. Therefore, Docteur Jules Guyot pears were used as the materials to study the changes of hydrogen peroxide (H2 O2 ) production, mitogen-activated protein kinase (MAPK) cascade, transcription factors, chlorophyll, and carotenoid metabolisms after ASM and PD98059 (a MAPK cascade blocker) treatments. RESULTS: ASM increased NADPH oxidase (NOX) and superoxide dismutase (SOD) activities, and H2 O2 content, promoted PcMAPKKK1, PcMAPKK3, and PcMAPK6 expressions, and down-regulated PcMYC2, PcPIF1, PcPIF3, and PcPIF4 expressions in exocarp of pears. ASM also delayed the decrease of chlorophyll a and b contents, and inhibited the accumulation of ß-carotene, lycopene and lutein, PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcLCYB, PcCRTZ2, PcCCS1 expressions, and promoted PcLCYE expression. PD98059 + ASM treatments depressed SOD and NOX activities and H2 O2 content, inhibited PcMAPKKK1, PcMAPKK3, PcMAPK6, PcPIF1, and PcPIF3 expressions, and promoted PcMYC2 and PcPIF4 expressions in exocarp of pears. Additionally, PD98059 + ASM accelerated PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcCYB, PcCRTZ2, and PcCCS1 expressions, thereby reducing chlorophyll a and b contents, and promoting ß-carotene, lycopene and lutein contents. CONCLUSIONS: Postharvest ASM treatment promoted the production of H2 O2 to activate the MAPK cascade, then phosphorylated/dephosphorylated transcription factors expression, and delayed chlorophyll decomposition and carotenoid synthesis in pears. © 2022 Society of Chemical Industry.


Assuntos
Pyrus , Clorofila/metabolismo , Clorofila A , Luteína , Licopeno , Proteínas Quinases Ativadas por Mitógeno , Pyrus/química , Superóxido Dismutase , Tiadiazóis , Fatores de Transcrição , beta Caroteno/metabolismo
15.
Plant Physiol Biochem ; 169: 92-101, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773806

RESUMO

In this study, 'Golden Delicious' apples were dipped with γ-aminobutyric acid (GABA) solution to investigate the changes of quality parameters, ethylene anabolism, polyamine metabolism and GABA shunt. Results showed that GABA distinctly suppressed respiratory rate, reduced titratable acidity, maintained higher soluble solid content and pericarp firmness of apples. Compared to the control, GABA also repressed the activities and gene expressions of polyamine oxidase (PAO) and diamine oxidase (DAO), enhanced MdMT, MdMS, MdSAMS, MdSAMDC, MdSPDS, MdODC, MdADC, and MdACL5 expressions, and accelerated the accumulation of putrescine, spermidine, and spermine in the exocarp of apples. Moreover, GABA decreased ethylene release, MdACS and MdACO gene expressions in the exocarp. In addition, exogenous GABA activated MdGAD, MdGDH, MdGS expressions and inhibited MdGABA-T and MdSSADH expressions in the GABA shunt, therefore increased endogenous GABA, pyruvic acid and glutamate contents in the exocarp. These findings suggest that exogenous GABA regulates ethylene anabolism, polyamine metabolism and GABA shunt to maintain fruit quality of 'Golden Delicious' apples.


Assuntos
Malus , Etilenos , Frutas , Malus/genética , Putrescina , Ácido gama-Aminobutírico
16.
Oxid Med Cell Longev ; 2021: 6955628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824671

RESUMO

Oxidative stress and apoptosis contribute to the progression of cerebral ischemia/reperfusion (I/R) injury. Ubiquitin-specific protease 29 (USP29) is abundantly expressed in the brain and plays critical roles in regulating oxidative stress and cell apoptosis. The purpose of the present study is to investigate the role and underlying mechanisms of USP29 in cerebral I/R injury. Neuron-specific USP29 knockout mice were generated and subjected to cerebral I/R surgery. For USP29 overexpression, mice were stereotactically injected with the adenoassociated virus serotype 9 vectors carrying USP29 for 4 weeks before cerebral I/R. And primary cortical neurons were isolated and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation to imitate cerebral I/R injury in vitro. USP29 expression was elevated in the brain and primary cortical neurons upon I/R injury. Neuron-specific USP29 knockout significantly diminished, whereas USP29 overexpression aggravated cerebral I/R-induced oxidative stress, apoptosis, and neurological dysfunction in mice. In addition, OGD/R-induced oxidative stress and neuronal apoptosis were also attenuated by USP29 silence but exacerbated by USP29 overexpression in vitro. Mechanistically, neuronal USP29 enhanced p53/miR-34a-mediated silent information regulator 1 downregulation and then promoted the acetylation and suppression of brain and muscle ARNT-like protein, thereby aggravating oxidative stress and apoptosis upon cerebral I/R injury. Our findings for the first time identify that USP29 upregulation during cerebral I/R may contribute to oxidative stress, neuronal apoptosis, and the progression of cerebral I/R injury and that inhibition of USP29 may help to develop novel therapeutic strategies to treat cerebral I/R injury.


Assuntos
Apoptose , Neurônios/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Glucose/deficiência , Hipóxia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
17.
Mol Plant ; 14(11): 1846-1863, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271176

RESUMO

Natural alleles that control multiple disease resistance (MDR) are valuable for crop breeding. However, only one MDR gene has been cloned in maize, and the molecular mechanisms of MDR remain unclear in maize. In this study, through map-based cloning we cloned a teosinte-derived allele of a resistance gene, Mexicana lesion mimic 1 (ZmMM1), which causes a lesion mimic phenotype and confers resistance to northern leaf blight (NLB), gray leaf spot (GLS), and southern corn rust (SCR) in maize. Strong MDR conferred by the teosinte allele is linked with polymorphisms in the 3' untranslated region of ZmMM1 that cause increased accumulation of ZmMM1 protein. ZmMM1 acts as a transcription repressor and negatively regulates the transcription of specific target genes, including ZmMM1-target gene 3 (ZmMT3), which functions as a negative regulator of plant immunity and associated cell death. The successful isolation of the ZmMM1 resistance gene will help not only in developing broad-spectrum and durable disease resistance but also in understanding the molecular mechanisms underlying MDR.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Zea mays/genética , Alelos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/fisiologia , RNA de Plantas/genética , RNA de Plantas/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Proteínas Repressoras/fisiologia
18.
Transl Lung Cancer Res ; 10(6): 2715-2732, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295672

RESUMO

BACKGROUND: To systematically assess the consistency of recommendations regarding diagnosis and treatment of non-small cell lung cancer (NSCLC) in clinical practice guidelines (CPGs). METHODS: We systematically searched relevant literature databases and websites to identify CPGs related to NSCLC. We extracted the general characteristics of the included guidelines and their recommendations and descriptively compared and analyzed the consistency of recommendations across the guidelines. RESULTS: A total of 28 NSCLC guidelines were retrieved. The recommendations covered mainly diagnosis and treatment. The recommendations in the guidelines differed substantially in various topics, such as the application of positron emission tomography (PET) and the classification of stage III. Fourteen guidelines divided stage III into two types: operable and inoperable; and the remaining 14 guidelines into three sub-stages IIIA, IIIB and IIIC. Recommendations regarding the treatment in stage III were relatively inconsistent. In driver gene (EGFR, ALK, ROS1) positive patients, targeted therapy was the most common recommendation for first-line treatment, but recommendations regarding second-line treatment varied according to the site of the mutation. In driver gene negative patients, immunotherapy was the most frequently recommended option as both first- and second-line treatment, followed by chemotherapy. DISCUSSION: A number of countries are devoting themselves to develop NSCLC guidelines and the process of updating guidelines is accelerating, yet recommendations between guidelines are not consistent. We adopted a systematic review method to systematically search and analyze the NSCLC guidelines worldwide. We objectively reviewed the differences in recommendations for NSCLC diagnosis and treatment between the guidelines. Inconsistency of recommendations across guidelines can result from multiple potential reasons. Such as, the guidelines developed time, different countries and regions and many more. Poor consistency across CPGs can confuse the guideline users, and we therefore advocate paying more attention to examining the controversies and updating guidelines timely to improve the consistency among CPGs. Our study had also several limitations, we limited the search to CPGs published in Chinese or English, the interpretation of recommendations is inherently subjective, we did not evaluate the details of the clinical content of the CPG recommendations. Our research presents the current status of NSCLC guidelines worldwide and give the opportunity to pay more attention to the existing gaps. Further investigations should determine the reasons for inconsistency, the implications for recommendation development, and the role of synthesis across recommendations for optimal guidance of clinical care treatment. With the continuous revision and update of the guidelines, we are confident that future guidelines will be formulated with higher quality to form clear, definite and consistent recommendations for NSCLC diagnosis and treatment.

19.
Food Chem ; 346: 128881, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33482531

RESUMO

This study was carried out to investigate the effect of acibenzolar-S-methyl (ASM) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) treatments on calcium-dependent protein kinases (CDPKs) and reactive oxygen species (ROS) metabolism in apples. Postharvest ASM treatment increased H2O2 content, reduced glutathione and ascorbic acid contents, and NADPH oxidase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase activities and retarded catalase activity and MdCAT expression in apples. ASM treatment enhanced MdSOD, MdPOD, MdAPX, MdGR, MdCDPK1, MdCDPK4, MdCDPK5, MdCDPK7, and MdCDPK21 expressions in apples. However, EGTA + ASM treatments suppressed H2O2, glutathione and ascorbic acid contents, NADPH oxidase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase activities. EGTA + ASM treatments suppressed the selected genes expressions in ROS metabolism and CDPKs, but up-regulated MdCAT expression in apples. These findings suggest that CDPKs play a vital role in regulating ROS metabolism and involve in inducing resistance in apples by ASM.


Assuntos
Peróxido de Hidrogênio/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Tiadiazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Ácido Egtázico/farmacologia , Frutas/efeitos dos fármacos , Frutas/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/química , Malus/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genética
20.
Aging (Albany NY) ; 12(19): 18833-18843, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051404

RESUMO

The coronavirus disease 2019 (COVID-19) became a global pandemic. Males, compared to females, seem to be more susceptible to COVID-19, but related evidence is scarce, especially in severe patients. We explored sex differences in clinical characteristics and potential risk factors for mortality in severe COVID-19 patients. In this retrospective cohort study, we included all severe COVID-19 patients admitted to Eastern Renmin Hospital of Wuhan University, Wuhan, China, with a definitive clinical outcome as of Apr 10, 2020. Of the included 651 patients, 332 were male, and 319 were female. Males and females did not differ in age and underlying comorbidities. Males were more likely than females to report fever and develop serious complications, including acute respiratory distress syndrome, secondary infection, acute cardiac injury, coagulopathy, acute kidney injury and arrhythmia. Further, males had much higher mortality relative to females. Multivariable regression showed neutrophilia (odds ratio 6.845, 95% CI 1.227-38.192, p=0.028), thrombocytopenia (19.488, 3.030-25.335, p=0.002), hypersensitive troponin I greater than 0.04 pg/mL (6.058, 1.545-23.755, p=0.010), and procalcitonin greater than 0.1 ng/mL (6.350, 1.396-28.882, p=0.017) on admission were associated with in-hospital death. With either of these risk factors, the cumulative survival rate was relatively lower in males than in females. In conclusion, males are more likely than females to develop serious complications and progress to death. The potential risk factors of neutrophilia, thrombocytopenia, hypersensitive troponin I greater than 0.04 pg/mL and procalcitonin more than 0.1 ng/mL may help clinicians to identify patients with poor outcomes at an early stage, especially in males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA