Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 493, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271339

RESUMO

BACKGROUND: Numerous studies have shown that gluten aggregation properties directly affect the processing quality of wheat, however, the genetic basis of gluten aggregation properties were rarely reported. RESULTS: To explore the genetic basis of gluten aggregation properties in wheat, an association population consisted with 207 wheat genotypes were constructed for evaluating nine parameters of aggregation properties on GlutoPeak across three-year planting seasons. A total of 940 significant SNPs were detected for 9 GlutoPeak parameters through genome-wide association analysis (GWAS). Finally, these SNPs were integrated to 68 non-redundant QTL distributed on 20 chromosomes and 54 QTL was assigned as pleiotropic loci which accounting for multiple parameters of gluten aggregation property. Furthermore, the peak SNPs representing 54 QTL domonstrated additive effect on all the traits. There was a significant positive correlation between the number of favorable alleles and the phenotypic values of each parameter. Peak SNPs of two novel QTL, q3AL.2 and q4DL, which contributing to both PMT (peak maximum time) and A3 (area from the first minimum to torque 15 s before the maximum torque) parameters, were selected for KASP (Kompetitive Allele Specific PCR) markers development and the KASP markers can be used for effectively evaluating the quality of gluten aggregation properties in the association population. CONCLUSION: The rapid and efficient GlutoPeak method for gluten measurement can be used for early selection of wheat breeding. This study revealed the genetic loci related to GlutoPeak parameters in association population, which would be helpful to develop wheat elite lines with improved gluten aggregation through molecular marker-assisted breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Glutens/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Fenótipo
2.
BMC Plant Biol ; 22(1): 229, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508960

RESUMO

BACKGROUND: Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS: Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION: To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Adenosina Trifosfatases/genética , Cálcio , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Prótons , Locos de Características Quantitativas , Triticum/genética
3.
Front Plant Sci ; 13: 826909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401644

RESUMO

Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.

4.
Foods ; 11(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267369

RESUMO

This research aims to investigate the effects of Staphylococcus xylosus YCC3 (Sx YCC3) and Lactobacillus plantarum MSZ2 (Lp MSZ2) on lipid hydrolysis and oxidation, the bacterial community's composition, and the volatile flavor compounds in fermented sausage. The bacterial community was examined by plate counting and high-throughput sequencing. Differential flavor compounds in non-inoculated and inoculated sausages were identified by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The results showed that the free fatty acid (FFA) content was increased after inoculating with Sx YCC3 or Lp MSZ2. The pH, peroxide value (POV), thiobarbituric acid reactive substances (TBARS) value, lipoxygenase activity, and the counts of Enterobacteriaceae were lower in the inoculated sausage than in the non-inoculated sausage. The bacterial inoculation enhanced the competitiveness of Staphylococcus and Lactobacillus and restricted the growth of unwanted bacteria. The OPLS-DA revealed that (Z)-hept-2-enal, (E)-2-octenal, 1-nonanal, octanal, and 1-octen-3-ol were common differential flavor compounds that were found in the inoculated sausages but were not found in the non-inoculated sausages. A positive correlation was observed between the differential flavor compounds and the relative abundance of Staphylococcus or Lactobacillus, or the FFA content. Our results indicated that inoculation with Sx YCC3 or Lp MSZ2 can improve fermented sausages' flavor by enhancing their bacterial quality and increasing their FFA content.

5.
J Adv Res ; 36: 163-173, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127171

RESUMO

Introduction: Gliadins are the major components of gluten proteins with vital roles on properties of end-use wheat product and health-relate quality of wheat. However, the function and regulation mechanisms of γ-gliadin genes remain unclear. Objectives: Dissect the effect of DNA methylation in the promoter of γ-gliadin gene on its expression level and gluten strength of wheat. Methods: The prokaryotic expression and reduction-oxidation reactions were performed to identify the effect of TaGli-γ-2.1 on dough strength. Bisulfite analysis and 5-Aza-2'-deoxycytidine treatment were used to verify the regulation of TaGli-γ-2.1 expression by pTaGli-γ-2.1 methylation. The content of gluten proteins composition was measured by RP-HPLC, and the gluten strength was measured by Gluten Index and Farinograph. Results: TaGli-γ-2.1 was classified into a subgroup of γ-gliadin multigene family and was preferentially expressed in the later period of grain filling. Addition of TaGli-γ-2.1 protein fragment into strong gluten wheat flour significantly decreased the stability time. Hypermethylation of three CG loci of pTaGli-γ-2.1 conferred to lower TaGli-γ-2.1 expression. Treatment with 5-Aza-2'-deoxycytidine in seeds of strong gluten wheat varieties increased the expression levels of TaGli-γ-2.1. Furthermore, the accumulations of gliadin and γ-gliadin were significantly decreased in hypermethylated wheat varieties, corresponding with the increasing of gluten index and dough stability time. Conclusion: Epigenetic modification of pTaGli-γ-2.1 affected gluten strength by modulating the proportion of gluten proteins. Hypermethylation of pTaGli-γ-2.1 is a novel genetic resource for enhancing gluten strength in wheat quality breeding.


Assuntos
Pão , Gliadina/genética , Glutens , Pão/análise , DNA/metabolismo , Metilação de DNA , Farinha/análise , Glutens/genética , Glutens/metabolismo , Melhoramento Vegetal , Triticum/genética
6.
BMC Plant Biol ; 21(1): 523, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758752

RESUMO

BACKGROUND: Peroxidase (POD) activity plays an important role in flour-based product quality, which is mainly associated with browning and bleaching effects of flour. Here, we performed a genome-wide association study (GWAS) on POD activity using an association population consisted with 207 wheat world-wide collected varieties. Our study also provide basis for the genetic improvement of flour color-based quality in wheat. RESULTS: Twenty quantitative trait loci (QTLs) were detected associated with POD activity, explaining 5.59-12.67% of phenotypic variation. Superior alleles were positively correlated with POD activity. In addition, two SNPs were successfully developed to KASP (Kompetitive Allele-Specific PCR) markers. Two POD genes, TraesCS2B02G615700 and TraesCS2D02G583000, were aligned near the QTLs flanking genomic regions, but only TraesCS2D02G583000 displayed significant divergent expression levels (P < 0.001) between high and low POD activity varieties in the investigated association population. Therefore, it was deduced to be a candidate gene. The expression level of TraesCS2D02G583000 was assigned as a phenotype for expression GWAS (eGWAS) to screen regulatory elements. In total, 505 significant SNPs on 20 chromosomes (excluding 4D) were detected, and 9 of them located within 1 Mb interval of TraesCS2D02G583000. CONCLUSIONS: To identify genetic loci affecting POD activity in wheat grain, we conducted GWAS on POD activity and the candidate gene TraesCS2D02G583000 expression. Finally, 20 QTLs were detected for POD activity, whereas two QTLs associated SNPs were converted to KASP markers that could be used for marker-assisted breeding. Both cis- and trans-acting elements were revealed by eGWAS of TraesCS2D02G583000 expression. The present study provides genetic loci for improving POD activity across wide genetic backgrounds and largely improved the selection efficiency for breeding in wheat.


Assuntos
Genoma de Planta , Peroxidase/genética , Triticum/enzimologia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Farinha , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Peroxidase/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
7.
BMC Plant Biol ; 21(1): 455, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615486

RESUMO

BACKGROUND: Glutenin contents and compositions are crucial factors influencing the end-use quality of wheat. Although the composition of glutenin fractions is well known, there has been relatively little research on the genetic basis of glutenin fractions in wheat. RESULTS: To elucidate the genetic basis for the contents of glutenin and its fractions, a population comprising 196 recombinant inbred lines (RILs) was constructed from two parents, Luozhen No.1 and Zhengyumai 9987, which differ regarding their total glutenin and its fraction contents (except for the By fraction). Forty-one additive Quantitative Trait Loci (QTL) were detected in four environments over two years. These QTL explained 1.3% - 53.4% of the phenotypic variation in the examined traits. Forty-three pairs of epistatic QTL (E-QTL) were detected in the RIL population across four environments. The QTL controlling the content of total glutenin and its seven fractions were detected in clusters. Seven clusters enriched with QTL for more than three traits were identified, including a QTL cluster 6AS-3, which was revealed as a novel genetic locus for glutenin and related traits. Kompetitive Allele-Specific PCR (KASP) markers developed from the main QTL cluster 1DL-2 and the previously developed KASP marker for the QTL cluster 6AS-3 were validated as significantly associated with the target traits in the RIL population and in natural varieties. CONCLUSIONS: This study identified novel genetic loci related to glutenin and its seven fractions. Additionally, the developed KASP markers may be useful for the marker-assisted selection of varieties with high glutenin fraction content and for identifying individuals in the early developmental stages without the need for phenotyping mature plants. On the basis of the results of this study and the KASP markers described herein, breeders will be able to efficiently select wheat lines with favorable glutenin properties and develop elite lines with high glutenin subunit contents.


Assuntos
Biomarcadores , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Sementes/química , Sementes/genética , Triticum/química , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/química , Produtos Agrícolas/genética , Variação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
8.
Genomics ; 113(5): 2934-2943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182079

RESUMO

Miniature inverted-repeat transposable elements (MITEs) are a group of class II transposable elements. The MITE Monkey King (MK) was first discovered upstream of BnFLC.A10. In this study, genome resequencing of four selected B. napus accessions, revealed more than 4000 distributed copies of MKs constituting ~2.4 Mb of the B. napus genomic sequence and caused 677 polymorphisms among the four accessions. MK -polymorphism-related markers across 128 natural and 58 synthetic accessions revealed more polymorphic MKs in natural than synthetic accessions. Ten MK -induced indels significantly affected the expression levels of the nearest gene based on RNAseq analysis, six of these effects were subsequently confirmed using qRT-PCR. Decreased expression pattern of MK -derived miRNA-bna-miR6031 was also observed under various stress treatments. Further research focused on the MITE families should promote not only our understanding of gene regulatory networks but also inform crop improvement efforts.


Assuntos
Brassica napus , MicroRNAs , Brassica napus/genética , Elementos de DNA Transponíveis , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/genética
9.
Planta ; 250(1): 23-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993403

RESUMO

MAIN CONCLUSION: This review will provide evidence for the indispensable function of these elements in regulating plant development and resistance to biotic and abiotic stresses, as well as their evolutionary role in facilitating plant adaptation. Over millions of years of evolution, plant genomes have acquired a complex constitution. Plant genomes consist not only of protein coding sequences, but also contain large proportions of non-coding sequences. These include introns of protein-coding genes, and intergenic sequences such as non-coding RNA, repeat sequences and transposable elements. These non-coding sequences help to regulate gene expression, and are increasingly being recognized as playing an important role in genome organization and function. In this review, we summarize the known molecular mechanisms by which gene expression is regulated by several species of non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) and by transposable elements. We further discuss how these non-coding RNAs and transposable elements evolve and emerge in the genome, and the potential influence and importance of these non-coding RNAs and transposable elements in plant development and in stress responses.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/genética , RNA não Traduzido/genética , Íntrons/genética , MicroRNAs/genética , RNA/genética , RNA Circular , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Fisiológico
10.
BMC Plant Biol ; 15: 149, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26084405

RESUMO

BACKGROUND: Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. RESULTS: The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. CONCLUSION: Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.


Assuntos
Brassicaceae/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Sequências Repetidas Invertidas/genética , Arabidopsis/genética , Composição de Bases/genética , Sequência de Bases , Mapeamento Cromossômico , Simulação por Computador , Metilação de DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Genoma de Planta , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional/genética , Proteínas Nucleares/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
11.
BMC Plant Biol ; 12: 238, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241244

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. RESULTS: We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. CONCLUSIONS: Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication.


Assuntos
Brassica napus/genética , Elementos de DNA Transponíveis , Locos de Características Quantitativas/fisiologia , Alelos , Sequência de Bases , Brassica napus/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , Flores , Genes de Plantas , Genótipo , Haplótipos , Mutação INDEL , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Estações do Ano
12.
PLoS One ; 7(9): e45751, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029223

RESUMO

We identified nine FLOWERING LOCUS C homologues (BnFLC) in Brassica napus and found that the coding sequences of all BnFLCs were relatively conserved but the intronic and promoter regions were more divergent. The BnFLC homologues were mapped to six of 19 chromosomes. All of the BnFLC homologues were located in the collinear region of FLC in the Arabidopsis genome except BnFLC.A3b and BnFLC.C3b, which were mapped to noncollinear regions of chromosome A3 and C3, respectively. Four of the homologues were associated significantly with quantitative trait loci for flowering time in two mapping populations. The BnFLC homologues showed distinct expression patterns in vegetative and reproductive organs, and at different developmental stages. BnFLC.A3b was differentially expressed between the winter-type and semi-winter-type cultivars. Microsynteny analysis indicated that BnFLC.A3b might have been translocated to the present segment in a cluster with other flowering-time regulators, such as a homologue of FRIGIDA in Arabidopsis. This cluster of flowering-time genes might have conferred a selective advantage to Brassica species in terms of increased adaptability to diverse environments during their evolution and domestication process.


Assuntos
Brassica napus/genética , Proteínas de Domínio MADS/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Processamento Alternativo , Sequência de Bases , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sintenia
13.
PLoS One ; 7(10): e47127, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071733

RESUMO

Brassica napus (AACC, 2n = 38), an oil crop of world-wide importance, originated from interspecific hybridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18), and has six FLOWERING LOCUS T (FT) paralogues. Two located on the homeologous chromosomes A2 and C2 arose from a lineage distinct from four located on A7 and C6. A set of three conserved blocks A, B and C, which were found to be essential for FT activation by CONSTANS (CO) in Arabidopsis, was identified within the FT upstream region in B. napus and its progenitor diploids. However, on chromosome C2, insertion of a DNA transposable element (TE) and a retro-element in FT upstream blocks A and B contributed to significant structural divergence between the A and C genome orthologues. Phylogenetic analysis of upstream block A indicated the conserved evolutionary relationships of distinct FT genes within Brassicaceae. We conclude that the ancient At-α whole genome duplication contributed to distinct ancestral lineages for this key adaptive gene, which co-exist within the same genus. FT-A2 was found to be transcribed in all leaf samples from different developmental stages in both B. rapa and B. napus, whereas FT-C2 was not transcribed in either B. napus or B. oleracea. Silencing of FT-C2 appeared to result from TE insertion and consequent high levels of cytosine methylation in TE sequences within upstream block A. Interestingly, FT-A7/C6 paralogues were specifically silenced in winter type B. napus but abundantly expressed in spring type cultivars under vernalization-free conditions. Motif prediction indicated the presence of two CO protein binding sites within all Brassica block A and additional sites for FT activation in block C. We propose that the ancestral whole genome duplications have contributed to more complex mechanisms of floral regulation and niche adaptation in Brassica compared to Arabidopsis.


Assuntos
Brassicaceae/genética , Evolução Molecular , Flores/genética , Variação Genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Brassica napus/genética , Cromossomos de Plantas , Sequência Conservada , Metilação de DNA , Diploide , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/metabolismo , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...