Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973752

RESUMO

Electrocatalytic nitrate reduction is an efficient way to produce ammonia sustainably. Herein, we rationally designed a copper metalloporphyrin-based hydrogen-bonded organic framework (HOF-Cu) through molecular engineering strategies for electrochemical nitrate reduction. As a result, the state-of-the-art HOF-Cu catalyst exhibits high NH3 Faradaic efficiency of 93.8%, and the NH3 production rate achieves a superior activity of 0.65 mmol h-1 cm-2. The in situ electrochemical spectroscopic combined with density functional theory calculations reveals that the dispersed Cu promotes the adsorption of NO3- and the mechanism is followed by deoxidation of NO3- to *NO and accompanied by deep hydrogenation. The generated *H participates in the deep hydrogenation of intermediate with fast kinetics as revealed by operando electrochemical impedance spectroscopy, and the competing hydrogen evolution reaction is suppressed. This research provides a promising approach to the conversion of nitrate to ammonia, maintaining the nitrogen balance in the atmosphere.

2.
Angew Chem Int Ed Engl ; : e202404884, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760322

RESUMO

Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 µmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.

3.
Nano Lett ; 24(20): 6051-6060, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682868

RESUMO

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.

4.
ACS Nano ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343104

RESUMO

Regulation of charge transport at the molecular level is essential to elucidating the kinetics of junction photoelectrodes across the heterointerface for photoelectrochemical (PEC) water oxidation. Herein, an integrated photoanode as the prototype was constructed by use of a 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin-cobalt molecule (CoTCPP) and ZnO on hematite (α-Fe2O3) photoanode. CoTCPP molecules serve as a typical hole transport layer (HTL), accelerating the transport of the photogenerated holes to oxygen evolution cocatalysts (OECs). Meanwhile, ZnO as the surface passivation layer (SPL) can passivate the interfacial state and reduce the level of electron leakage from hematite into the electrolyte. After the integration of OECs, the state-of-the-art α-Fe2O3/ZnO/CoTCPP/OECs photoanode exhibits a distinguished photocurrent density and excellent stability in comparison with pristine α-Fe2O3. The simultaneous incorporation of a ZnO and CoTCPP dual interlayer can effectively modulate the interfacial photoinduced charge transfer for PEC reaction. This work provides in-depth insights into interfacial charge transfer across junction electrodes and identifies the critical roles of solar PEC conversion.

5.
Chem Rev ; 123(22): 12371-12430, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37615679

RESUMO

Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Fototerapia , Bactérias , Fungos
6.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570563

RESUMO

With the rapid development of the economy and society, the problem of energy shortage and environmental pollution is receiving more and more attention [...].

7.
Adv Mater ; 35(46): e2304379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37487190

RESUMO

Direct electrochemical reduction of CO2 (CO2 RR) into value-added chemicals is a promising solution to reduce carbon emissions. The activity of CO2 RR is influenced deeply by the reaction microenvironment and electronic properties of the catalysts. Herein, the surface PO4 3- anions are tuned to modulate the local microenvironment and the electronic properties of the indium-based catalyst with abundant metal-oxygen species enabling efficient electrochemical conversion of CO2 to HCOO- . Indium nanoparticles coupled with PO4 3- anions (PO4 3- -In NPs) achieve a high selectivity of HCOO- up to 91.4% at a low potential of -0.98 V versus reversible hydrogen electrode (versus RHE) and a high HCOO- partial current density of 279.3 mA cm-2 at -1.1 V versus RHE in the electrochemical flow cell. In situ and ex situ characterizations confirm the PO4 3- anions keep stable on the surface of indium during CO2 RR, accelerating the generation of OCHO* intermediate. From density functional theory calculations, PO4 3- anions enrich the metal-oxygen species on the substrate to optimize the electronic structure of the catalysts and induce a local microenvironment with massive K+ ions on the interface, thus reducing the activation energy barrier of CO2 RR.

8.
Angew Chem Int Ed Engl ; 62(32): e202306420, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264717

RESUMO

Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal-organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass-forming cobalt-based zeolitic imidazolate framework (Co-ag ZIF-62) was introduced on various metal oxide (MO: Fe2 O3 , WO3 and BiVO4 ) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co-ag ZIF-62/NiO/MO photoanodes. Owing to the excellent conductivity, stability and open active sites of MOF glass, Co-ag ZIF-62/NiO/MO photoanodes exhibit a significantly enhanced photoelectrochemical water oxidation activity and stability in comparison to pristine MO photoanodes. From experimental analyses and density functional theory calculations, Co-ag ZIF-62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction (OER), and thus improve PEC performance. This MOF glass not only serves as an excellent OER cocatalyst on tunable photoelectrodes, but also enables promising opportunities for PEC devices for solar energy conversion.

9.
Angew Chem Int Ed Engl ; 62(27): e202304754, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37126395

RESUMO

Understanding the nature of single-atom catalytic sites and identifying their spectroscopic fingerprints are essential prerequisites for the rational design of target catalysts. Here, we apply correlated in situ X-ray absorption and infrared spectroscopy to probe the edge-site-specific chemistry of Co-N-C electrocatalyst during the oxygen reduction reaction (ORR) operation. The unique edge-hosted architecture affords single-atom Co site remarkable structural flexibility with adapted dynamic oxo adsorption and valence state shuttling between Co(2-δ)+ and Co2+ , in contrast to the rigid in-plane embedded Co1 -Nx counterpart. Theoretical calculations demonstrate that the synergistic interplay of in situ reconstructed Co1 -N2 -oxo with peripheral oxygen groups gives a rise to the near-optimal adsorption of *OOH intermediate and substantially increases the activation barrier for its dissociation, accounting for a robust acidic ORR activity and 2e- selectivity for H2 O2 production.

10.
Nat Commun ; 14(1): 1873, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015944

RESUMO

Rational design efficient transition metal-based electrocatalysts for oxygen evolution reaction (OER) is critical for water splitting. However, industrial water-alkali electrolysis requires large current densities at low overpotentials, always limited by intrinsic activity. Herein, we report hierarchical bimetal nitride/hydroxide (NiMoN/NiFe LDH) array as model catalyst, regulating the electronic states and tracking the relationship of structure-activity. As-activated NiMoN/NiFe LDH exhibits the industrially required current density of 1000 mA cm-2 at overpotential of 266 mV with 250 h stability for OER. Especially, in-situ electrochemical spectroscopic reveals that heterointerface facilitates dynamic structure evolution to optimize electronic structure. Operando electrochemical impedance spectroscopy implies accelerated OER kinetics and intermediate evolution due to fast charge transport. The OER mechanism is revealed by the combination of theoretical and experimental studies, indicating as-activated NiMoN/NiFe LDH follows lattice oxygen oxidation mechanism with accelerated kinetics. This work paves an avenue to develop efficient catalysts for industrial water electrolysis via tuning electronic states.

11.
Angew Chem Int Ed Engl ; 62(7): e202216326, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36519523

RESUMO

Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6 -Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from -0.5 to -0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm-2 is achieved at -1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.

12.
Adv Mater ; 35(6): e2209307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408935

RESUMO

The regulation of atomic and electronic structures of active sites plays an important role in the rational design of oxygen evolution reaction (OER) catalysts toward electrocatalytic hydrogen generation. However, the precise identification of the active sites for surface reconstruction behavior during OER remains elusive for water-alkali electrolysis. Herein, irreversible reconstruction behavior accompanied by copper dynamic evolution for cobalt iron layered double hydroxide (CoFe LDH) precatalyst to form CoFeCuOOH active species with high-valent Co species is reported, identifying the origin of reconstructed active sites through operando UV-Visible (UV-vis), in situ Raman, and X-ray absorption fine-structure (XAFS) spectroscopies. Density functional theory analysis rationalizes this typical electronic structure evolution causing the transfer of intramolecular electrons to form ligand holes, promoting the reconstruction of active sites. Specifically, unambiguous identification of active sites for CoFeCuOOH is explored by in situ 18 O isotope-labeling differential electrochemical mass spectrometry (DEMS) and supported by theoretical calculation, confirming mechanism switch to oxygen-vacancy-site mechanism (OVSM) pathway on lattice oxygen. This work enables to elucidate the vital role of dynamic active-site generation and the representative contribution of OVSM pathway for efficient OER performance.

13.
Sci Bull (Beijing) ; 67(19): 1971-1981, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546207

RESUMO

Photoredox catalysis has become an indispensable solution for the synthesis of small organic molecules. However, the precise construction of single-atomic active sites not only determines the catalytic performance, but also avails the understanding of structure-activity relationship. Herein, we develop a facile approach to immobilize single-atom Ni sites anchored porous covalent organic framework (COF) by use of 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline and 2,6-diformylpyridine (Ni SAS/TD-COF). Ni SAS/TD-COF catalyst achieves excellent catalytic performance in visible-light-driven catalytic carbon-nitrogen cross-coupling reaction between aryl bromides and amines under mild conditions. The reaction provides amine products in excellent yields (71%-97%) with a wide range of substrates, including aryl and heteroaryl bromides with electron-deficient, electron-rich and neutral groups. Notably, Ni SAS/TD-COF could be recovered from the reaction mixture, corresponding to the negligible loss of photoredox performance after several cycles. This work provides a promising opportunity upon rational design of single-atomic active sites on COFs and the fundamental insight of photoredox mechanism for sustainable organic transformation.

14.
ACS Appl Mater Interfaces ; 14(45): 50849-50857, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321608

RESUMO

Early transition metals offer promising orthogonal reactivity to catalytic processes promoted by late transition metals. Nevertheless, exploiting variable single-atomic configurations as reactive centers is hitherto not well documented owing to their oxophilic nature. Herein we report an in-situ grafting strategy that employs nitrogenated holey carbon nitrides as a scaffold and invokes the reasonably good match of temperature-dependent pyrolysis to stabilize an atomic titanium-nitrogen (Ti1N2OH) moiety onto the hierarchical porous carbon support (Ti1/NC-SAC). The Ti1/NC-SAC as the cathode in dye-sensitized solar cells assembly exhibited superior electrocatalytic activity toward the triiodine reduction reaction, comparable to the conventional Pt cathode. DFT studies theoretically identified that the intrinsic robust triiodine reduction activity is essentially governed by the unique edge-hosted Ti sites, from both aspects, near-optimal adsorption of I intermediate and electron-donating ability. This work sheds light on the rational design of Ti-based SACs and their applications in photovoltaic fields.

15.
J Am Chem Soc ; 144(37): 17097-17109, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36066387

RESUMO

Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 µmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.

16.
Angew Chem Int Ed Engl ; 61(40): e202208904, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35945151

RESUMO

Photoreduction of CO2 to C2+ solar fuel is a promising carbon-neutral technology for renewable energy. This strategy is challenged by its low productivity due to low efficiency in multielectron utilization and slow C-C coupling kinetics. This work reports a dual-metal photocatalyst consisting of atomically dispersed indium and copper anchored on polymeric carbon nitride (InCu/PCN), on which the photoreduction of CO2 delivered an excellent ethanol production rate of 28.5 µmol g-1 h-1 with a high selectivity of 92 %. Coupled experimental investigation and DFT calculations reveal the following mechanisms underpinning the high performance of this catalyst. Essentially, the In-Cu interaction enhances the charge separation by accelerating charge transfer from PCN to the metal sites. Indium also transfers electrons to neighboring copper via Cu-N-In bridges, increasing the electron density of copper active sites. Furthermore, In-Cu dual-metal sites promote the adsorption of *CO intermediates and lower the energy barrier of C-C coupling.

17.
Adv Mater ; 34(29): e2202523, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577533

RESUMO

Tuning the reactivity of lattice oxygen is of significance for lowering the energy barriers and accelerating the oxygen evolution reaction (OER). Herein, single-atomic Mo sites are anchored on Ni-Fe oxyhydroxide nanoarrays by a facile metal-organic-framework-derived strategy, exhibiting superior performance toward the OER in alkaline media. In situ electrochemical spectroscopy and isotope-labeling experiments reveal the involvement of lattice oxygen during OER cycles. Combining theoretical and experimental investigations of the electronic configuration, it is comprehensively confirmed that the incorporation of single-atomic Mo sites enables higher oxidation state of the metal and strengthened metal-oxygen hybridization, as well as the formation of oxidized ligand holes above the Fermi level. In a word, the considerable acceleration of water oxidation is achieved via enhancing the reactivity of lattice oxygen and triggering the lattice oxygen activation. This work may provide new insights for designing ideal electrocatalysts via tuning the chemical state and activating the anions ligands.

18.
Small ; 18(17): e2107333, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324069

RESUMO

Photocatalytic therapy is an alternative antibacterial pathway but most photocatalysts are limited by light absorption, charge transfer and insufficient production of reactive oxygen species (ROS). Herein, the authors utilize boron doped niobic acid nanosheets (B-HNbO3 NSs) as a superior photocatalytic antibacterial platform. The experimental results and density functional theory (DFT) confirm that superior photocatalytic therapy activity is mainly due to boron doping, which not only promotes the generation and separation of electrons and holes, but also enhances the adsorption of water and oxygen molecules on B-HNbO3 NSs. Consequently, multiple ROS including hydroxyl radicals (•OH), superoxide radicals (•O2- ), and singlet oxygen (1 O2 ) are generated under light irradiation, resulting in outstanding bacterial killing ability of B-HNbO3 NSs. Besides, oxygen is produced during the therapy process, thus alleviating the inflammatory response caused by hypoxia. Furthermore, molecular dynamics (MD) simulations verify that the nanosheet structure makes it possess strong electrostatic attraction for bacterial cell membranes, leading to physical insertion and damage to bacterial cells. Therefore, bactericidal rates for four types of bacteria are all more than 99%, proving its excellent and broad-spectrum antibacterial capacity. Moreover, B-HNbO3 NSs could be applied to treat biofilm-coated medical devices in vivo, suggesting its possibility in practical application.


Assuntos
Antibacterianos , Boro , Antibacterianos/química , Antibacterianos/farmacologia , Radical Hidroxila , Oxigênio , Espécies Reativas de Oxigênio
19.
Angew Chem Int Ed Engl ; 61(16): e202200946, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142021

RESUMO

The development of semiconductor photoanodes is of great practical interest for the realization of photoelectrochemical (PEC) water splitting. Herein, MXene quantum dots (MQD) were grafted on a BiVO4 substrate, then a MoOx layer by combining an ultrathin oxyhydroxide oxygen evolution cocatalyst (OEC) was constructed as an integrated photoanode. The OEC/MoOx /MQD/BiVO4 array not only achieves a current density of 5.85 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (vs. RHE), but also enhances photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to the incorporation of MoOx /MQD as hole transfer layers, retarding charge recombination, promoting hole transfer and accelerating water splitting kinetics. This proof-of-principle work not only demonstrates the potential utilization of hole transfer layers, but also sheds light on rational design and fabrication of integrated photoanodes for feasible solar energy conversion.

20.
ACS Appl Mater Interfaces ; 13(49): 58596-58604, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34860504

RESUMO

Photocatalytic generation of singlet oxygen (1O2) is an attractive strategy to convert organic chemicals to high value-added products. However, the scarcity of suitable active sites in photocatalysts commonly leads to the poor adsorption and activation of oxygen molecules from a triplet state to a singlet state. Here, we report single atomic Cu-N3 sites on tubular g-C3N4 for the production of singlet oxygen. X-ray absorption fine spectroscopy, in combination with high-resolution electron microscopy techniques, determines the existence of atomically dispersed Cu sites with Cu-N3 coordination mode. The combined analysis of electron spin resonance and time-resolved optical spectra confirmed that a single atomic Cu-N3 structure facilitates a high concentration of 1O2 generation due to charge transport, electron-hole interaction, and exciton effect. Benefiting from the merits, a single atomic photocatalyst yields nearly 100% conversion and selectivity from thioanisole to sulfoxide within 2.5 h under visible light irradiation. This work deeply reveals the design and construction of catalysts with specific active sites, which are helpful to improve the activation efficiency of oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...