Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764379

RESUMO

Single photon ionization (SPI) based on vacuum ultraviolet (VUV) lamps has been extensively investigated and applied due to its clean mass spectra as a soft ionization method. However, the photon energy of 10.6 eV and photon flux of 1011 photons s-1 of a commercial VUV lamp limits its range of ionizable analytes as well as its sensitivity. This work designs a chemical ionization focusing integrated (CIFI) ionization source time-of-flight mass spectrometry (TOFMS) based on a VUV lamp for the detection of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). The photoelectrons obtained from the VUV lamp via the photoelectric effect ionized the oxygen and water in the air to obtain the reagent ions. The ion-molecule-reaction region (IMR) is constituted by a segmented quadrupole that radially focuses the ions using a radio-frequency electric field. This significantly enhances the yield and transport efficiency of the product ions leading to a great improvement in sensitivity. As a result, a 44-fold and 1154-fold increase in the signal response for benzene and pentanal were achieved, respectively. To verify the reliability of the ionization source, the linear correspondence and repeatability of benzene and pentanal were investigated. Satisfactory dynamic linearity was obtained in the mixing ratio range of 5-50 ppbv, and the relative standard deviation (RSD) of inter-day reached 3.91% and 6.26%, respectively. Finally, the CIFI-TOFMS was applied to the determination of OVOCs, and the LOD of 12 types of OVOCs reached the pptv level, indicating that the ionization source has the potential for accurate and sensitive online monitoring of atmospheric OVOCs.

2.
Environ Sci Technol ; 57(14): 5646-5654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988557

RESUMO

Formamide has been classified as a Class 1B reproductive toxicant to children by the European Union (EU) Chemicals Agency. Foam mats are a potential source of formamide and ammonia. Online dopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry (DA-APPI-TOFMS) coupled with a Teflon environmental chamber was developed to assess the exposure risk of formamide and ammonia from foam mats to children. High levels of formamide (average 3363.72 mg/m3) and ammonia (average 1586.78 mg/m3) emissions were measured from 21 foam mats with three different raw material types: ethylene-vinyl acetate (EVA: n = 7), polyethylene (PE: n = 7), and cross-linked polyethylene (XPE: n = 7). The 28 day emission testing for the selected PE mat showed that the emissions of formamide were 2 orders of magnitude higher than the EU emission limit of 20 µg/m3, and formamide may be a permanent indoor contaminant for foam mat products during their life cycle. The exposure assessment of children aged 0.5-6 years showed that the exposure dose was approximately hundreds of mg/kg-day, and the age group of 0.5-2 years was subject to much higher dermal exposures than others. Thus, this study provided key relevant information for further studies on assessing children's exposure to indoor air pollution from foam mats.


Assuntos
Poluição do Ar em Ambientes Fechados , Amônia , Humanos , Criança , Lactente , Pré-Escolar , Amônia/análise , Poluição do Ar em Ambientes Fechados/análise , Formamidas/análise , Polietilenos/análise
3.
Talanta ; 254: 124170, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508899

RESUMO

Natural gas pipeline leakage seriously endangers people's lives and properties, and there is an urgent need for on-site, rapid, and accurate locating the leakage point of the underground natural gas pipeline. Here, we added neon gas to natural gas pipelines as a tracer gas, and used a miniature time-of-flight mass spectrometry (mini-TOFMS) to on-site detect neon gas to quickly locate the leak point of underground natural gas pipelines. The mini-TOFMS used capillary tube sampling to directly analyze the leaked neon gas without sample preparation, and the analysis time of a single sample was only 60 s, which was less than one-seventeenth that of traditional off-line gas chromatography (GC) method. The mini-TOFMS exhibited a linear response range from 69 ppmv to 3.0 × 105 ppmv with the limit of detection (LOD, S/N = 3) of 19.0 ppmv. The correlation of GC and mini-TOFMS for Ne quantitative analysis was as high as 0.98. The performance of the newly designed method with the mini-TOFMS was demonstrated by on-site locating the underground natural gas pipeline leakage point in the experimental station. And leakage point of the natural gas pipeline, especially for those pipelines with different gas pressure buried under the same road, can be found more efficiently and accurately.


Assuntos
Gás Natural , Humanos , Gás Natural/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Neônio/análise , Espectrometria de Massas
4.
Sci Total Environ ; 839: 156281, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644408

RESUMO

Amines in fine particles constitute a significant fraction of secondary organic aerosols and have adverse effects on air quality and human health. To understand the chemical composition, variation characteristics, and potential sources of fine particulate amines in the coastal area in northern China, field sampling and chemical analysis were conducted in coastal Qingdao in the winter of 2018 and 2019. A total of 15 major amines were identified and quantified by using an ultra-high-performance liquid chromatography coupled with mass spectrometry. The average concentration of total amines in PM2.5 samples was approximately 130 ng m-3. Dimethylamine was the most abundant species with average fractions of 44.8% and 65.0% in the quantified amines during the two field campaigns, followed by triethylamine (22.9% and 8.7%) and methylamine (8.3% and 4.4%). The amines in PM2.5 usually exhibited elevated concentrations in the presence of high levels of SO2 and NOx or in the condition of high relative humidity. A receptor model of positive matrix factorization was employed and seven major sources were identified, including coal combustion, industrial production, vehicle exhaust, biomass burning, agricultural activities, secondary formation, and marine emission. Surprisingly, most of 15 amines in fine particles primarily originated from the primary emissions of anthropogenic activities particularly related to coal combustion and industrial productions, which should be given close concern to address the amine pollution.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Aminas , China , Carvão Mineral/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
5.
Analyst ; 147(11): 2484-2493, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35535706

RESUMO

In the operation using sevoflurane as an anesthetic, some patients, especially children, will have agitation symptoms after awakening from anesthesia. The incidence of agitation is about 20%, and current detection methods cannot predict the probability of a patient with agitation. In this paper, a magnetic field enhanced photoelectron ionization (MEPEI) miniature time-of-flight mass spectrometer (TOFMS) was developed for point-of-care detection and verification of the relationship between postoperative agitation symptoms and sevoflurane concentration in exhaled breath. The MEPEI source is water vapor resistant and can directly ionize sevoflurane via capillary sampling and obtain its characteristic ion [C4H3F6O]+ (m/z 181), and the analysis time of exhaled breath is only 60 s. Three standard curves of 0.5-80 ppmv, 80-2000 ppmv and 2000-15 000 ppmv were formulated to quantitatively detect sevoflurane in different scenarios, the coefficient of determination (R2) was higher than 0.9882 and the relative standard deviation (RSD) of signal intensity was only 1.24%. The results indicated that four of the 46 child patients had agitation symptoms. Partial least squares-discriminant analysis (PLS-DA) was performed to analyze the data, and an identification and treatment strategy was established for child patients with agitation symptoms. The new miniature MEPEI-TOFMS was also successfully used to evaluate the concentration of sevoflurane in a medical environment. The real-time monitoring of sevoflurane concentration in exhalation indicates the potential of this method for low-cost and convenient point-of-care (POC) detection and diagnosis of agitation symptoms.


Assuntos
Anestésicos Inalatórios , Éteres Metílicos , Período de Recuperação da Anestesia , Criança , Expiração , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Sevoflurano
6.
J Environ Sci (China) ; 114: 66-74, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459515

RESUMO

Ammonia (NH3) is ubiquitous in the atmosphere, it can affect the formation of secondary aerosols and particulate matter, and cause soil eutrophication through sedimentation. Currently, the use of radioactive primary reagent ion source and the humidity interference on the sensitivity and stability are the two major issues faced by chemical ionization mass spectrometer (CIMS) in the analysis of atmospheric ammonia. In this work, a vacuum ultraviolet (VUV) Kr lamp was used to replace the radioactive source, and acetone was ionized under atmospheric pressure to obtain protonated acetone reagent ions to ionize ammonia. The ionization source is designed as a separated three-zone structure, and even 90 vol.% high-humidity samples can still be directly analyzed with a sensitivity of sub-ppbv. A signal normalization processing method was designed, and with this new method, the quantitative relative standard deviation (RSD) of the instrument was decreased from 17.5% to 9.1%, and the coefficient of determination was increased from 0.8340 to 0.9856. The humidity correction parameters of the instrument were calculated from different humidity, and the ammonia concentrations obtained under different humidity were converted to its concentration under zero humidity condition with these correction parameters. The analytical time for a single sample is only 60 sec, and the limit of detection (LOD) was 8.59 pptv (signal-to-noise ratio S/N = 3). The ambient measurement made in Qingdao, China, in January 2021 with this newly designed CIMS, showed that the concentration of ammonia ranged from 1 to 130 ppbv.


Assuntos
Acetona , Amônia , Íons/química , Espectrometria de Massas/métodos , Vácuo
7.
Anal Chim Acta ; 1137: 56-63, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153609

RESUMO

Trimethylamine (TMA) is ubiquitous in the marine systems and may affect atmospheric chemistry as a precursor and strong stabilizer of atmospheric secondary aerosol, influencing cloud formation. Rapid and accurate measurement of the concentration of TMA in seawater is challenging due to their polarity, aqueous solubility, volatility and existence at low concentrations in marine environments. In this study, a dopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry (DA-APPI-TOFMS) coupled with a dynamic purge-release method was developed for rapid and sensitive analysis of TMA in seawater. A novel three-zones ionization source has been developed for improving the ionization efficiency of analyte molecules and minimizing the influence of high-humidity of the sample gas, which allowed direct analysis of high-humidity (RH> 90%) gas samples from microbubble purging process by the mass spectrometer. At atmospheric pressure, the three-zones ionization source allows the use of high-speed purge gas to quickly purge all organic amines dissolved in the water into the gas phase, ensuring quantitative accuracy. The limit of quantification (LOQ) for TMA down to 0.1 µg L-1 was obtained in less than 2 min by consuming only 2 mL seawater sample. This method was applied for the determination of the concentrations of TMA in the coastal seawater to validate its practicability and reliability for analysis of trace amines in marine environments.

8.
Sci Rep ; 10(1): 15039, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929165

RESUMO

Gas-insulated switchgear (GIS) is widely used across multiple electric stages and different power grid levels. However, the threat from several inevitable faults in the GIS system surrounds us for the safety of electricity use. In order to improve the evaluation ability of GIS system safety, we propose an efficient strategy by using machine learning to conduct SF6 decomposed components analysis (DCA) for further diagnosing discharge fault types in GIS. Note that the empirical probability function of different faults fitted by the Arrhenius chemical reaction model has been investigated into the robust feature engineering for machine learning based GIS diagnosing model. Six machine learning algorithms were used to establish models for the severity of discharge fault and main insulation defects, where identification algorithms were trained by learning the collection dataset composing the concentration of the different gas types (SO2, SOF2, SO2F2, CF4, and CO2, etc.) in the system and their ratios. Notably, multiple discharge fault types coexisting in GIS can be effectively identified based on a probability model. This work would provide a great insight into the development of evaluation and optimization on solving discharge fault in GIS.

9.
Se Pu ; 37(8): 904-910, 2019 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-31642262

RESUMO

One of the most abundant biological volatile organic compounds (BVOCs) in the atmosphere, monoterpene, is characterized by its short lifetime, low concentration, fast temporal and spatial variations, and wide variety of isomers. In this study, a multi-capillary column (MCC) was combined with high-pressure photoionization time-of-flight mass spectrometry (HPPI-TOF MS) and employed to develop an MCC-HPPI-TOF MS combination instrument as an online two-dimensional gas chromatography-mass spectrometry (GC-MS) method for the rapid qualitative and quantitative analysis of monoterpene isomers. As a result, six monoterpene isomers, α -pinene, ß -pinene, α -terpinene, γ -terpinene, 3-carene, and limonene, were successfully isolated in 180 s with limits of detection (LODs) as low as 6 µg/m3 without sample pre-enrichment. This method was successfully applied to the rapid online analysis of monoterpenes released from the branches and leaves of Cedrus atlantica and Sabina chinensis, which shows the capability and potential application of the method for the online detection of complex sample mixtures in environmental monitoring, process analysis, and other fields.


Assuntos
Monoterpenos/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
10.
Anal Chem ; 91(15): 10212-10220, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31311269

RESUMO

The increasing demand for rapid and sensitive roadside identification of trace illegal drugs drives the development of high-performance miniature mass spectrometric instrumentation and methodology. Here, we report a synchronized flash-thermal-desorption purging and ion injection (SFTDPI) method to increase the sensitive and rapid screening of volatile and nonvolatile illegal drugs for miniature ion trap mass spectrometry (ITMS). The flash-thermal desorption could reach 290 °C in 2.5 s, which could achieve efficient vaporization of nonvolatile noscapine with boiling point at 565 °C. ITMS using discontinuous atmospheric pressure interface (DAPI) has an ion utilization ratio of less than 1%, the synchronized purging for flash-thermal desorption and ion injection with DAPI could accurately control the time interval along with the desorption, gas purging, ionization and ion injection, and the sample utilization ratio increases more than five times. The miniature SFTDPI-ITMS presents good performance: (1) more than 60 times improvement in sensitivity was achieved compared to the previously reported thermal-desorption acetone-assisted photoionization ion trap mass spectrometer for nonvolatile drugs, and the minimum detectable quantity reaches 50 pg for fentanyl. (2) Ten kinds of mixing drugs with boiling point difference of 300 °C can be simultaneously identified within 3 s under a single analysis. SFTDPI-ITMS was deployed at the roadside checkpoint of Sino-Burmese border; fentanyl in the captured encapsulated powder and the suspected opiate had been successfully identified.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Drogas Ilícitas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos Orgânicos Voláteis/análise
11.
Anal Chem ; 91(6): 3845-3851, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30763516

RESUMO

Illegal drug smugglings and crimes have long been a global concern, and an apparatus which can identify drugs on-the-spot is urgently demanded by law enforcement. A thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer was developed for on-site and rapid identification of illegal drugs at checkpoints. Acetone was chosen for dopant-assisted photoionization, and the sensitivity of selected drugs was further enhanced with protonated analyte molecular ions [M + H]+. For example, the sensitivity of ephedrine was improved by as high as 22-fold. The mass discrimination effect, which was usually considered as a shortcoming of ion trap mass analyzer, was ingeniously utilized to eliminate the protonated acetone reagent ions and maximize the trapping efficiency of analyte ions in mass analyzer. Twenty-seven drugs were analyzed, and the limits of detection (LODs) of selected illegal drugs were at the nanogram level with analysis time of 2 s. Analyte/dopant ion peak intensity ratios in mass spectra could be used for quantitation to improve the quantitative analysis performance of miniature ion trap mass spectrometer equipped with a discontinuous atmospheric pressure interface (DAPI) with the prerequisite that dopant ions and analyte ions could be simultaneously and effectively trapped by the ion trap. The RSD of signal intensity was reduced from 25.3% to 8.5%, and the linear range was extended from 0.5-25 to 0.5-100 ng/µL for methamphetamine. A temperature-resolved thermal desorption sampling strategy was developed and used to distinguish illegal drug components in plant-based drug samples and drinks containing illegal drugs.


Assuntos
Acetona/química , Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Miniaturização , Processos Fotoquímicos , Temperatura , Métodos Analíticos de Preparação de Amostras , Pressão Atmosférica , Drogas Ilícitas/química , Fatores de Tempo
12.
Analyst ; 144(4): 1104-1109, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480677

RESUMO

Methanol-to-olefins (MTO) is a very important industrial catalysis technique for the production of light olefins, which is of great economic value and strategic significance. However, it is a great challenge for the traditional analytical methods to obtain the real-time information of product variation during MTO reaction process, which is vital for the conversion process research and mechanism explanation. In this study, a single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) based on a windowless RF-discharge (WLRF) lamp was developed for real-time measurement of catalytic product during the initial stage of MTO reaction. The vacuum ultraviolet (VUV) photon energy was easily adjusted by changing the discharge gas. Argon (Ar) gas was eventually adopted as the discharge gas, since it produces photons with appropriate energy of 11.6 eV and 11.8 eV for ionization of light olefin molecules. The detection sensitivities of ethylene and propylene were largely improved to a substantially similar level with limits of detection (LODs) down to 16.98 and 9.64 ppbv, respectively. The initial stage of MTO reaction was real-time monitored with a high temporal resolution of 0.5 s, revealing that ethylene was the first olefin product followed by propylene. The successful application of WLRF-SPI-TOFMS in the monitoring of MTO catalytic process indicated broad application prospects of this instrument in the industrial reaction process monitoring.

13.
Talanta ; 192: 46-51, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348418

RESUMO

An in-source, helical membrane inlet single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) has been developed to improve the detection sensitivity of trace volatile organic compounds (VOCs) in water. A helical winding membrane and a four-stage differential pumping system of TOFMS was designed to improve and maintain the vapor pressure of analyte, which is linearly associated with the sensitivity of SPI. The helical winding increased the length of the hollow fiber membrane (HFM) from 7 cm to 100 cm and the pressure inside of SPI source was elevated from 3.6 Pa to 28 Pa, and then the sensitivity was increased by 16, 34.7, 32.3, 17.9 and 13.9 times for benzene, ethyl tert-butyl ether (ETBE), aniline, p-xylene, and chlorobenzene (MCBz) respectively. The limits of quantitation (LOQs) of benzene, ETBE, aniline, p-xylene and MCBz were 0.014, 0.143, 0.556, 0.036, 0.025 µg L-1 respectively with a measurement time of 50 s, which were enhanced by more than one order of magnitude compared to our previous work (reference [32]). The in-source design of helical winding membrane i.e. putting the membrane inside the SPI source dramatically reduced the response time to 1.33 min. This system has been evaluated for VOCs in sewage water of different laboratory buildings and automatic monitoring the pollutants in sewage water from a biological laboratory building. The automatic continuous analysis of organic pollutants in water has very important significance and broad application prospect for online assessment of water quality.

14.
Anal Chem ; 90(8): 5398-5404, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29570978

RESUMO

Direct mass spectrometric measurements of saturated hydrocarbons, especially small n-alkanes, remains a great challenge because of low basicity and lack of ionizable functional groups. In this work, a novel high-pressure photoelectron-induced O2+ cation chemical ionization source (HPPI-OCI) at kPa based on a 10.6 eV krypton lamp was developed for a time-of-flight mass spectrometer (TOFMS). High-intensity O2+ reactant ions were generated by photoelectron ionization of air molecules in the double electric field ionization region. The quasi-molecular ions, [M-H]+, of C3-C6 n-alkanes, gradually dominated in the mass spectra when the ion source pressure was elevated from 88 to 1080 Pa, with more than 3 orders of magnitude improvement in signal intensity. As a result, the achieved limits of detection were lowered to 0.14, 0.11, 0.07, and 0.1 ppbv for propane, n-butane, n-pentane, and n-hexane, respectively. The performance of the HPPI-OCI TOFMS was first demonstrated by analysis of exhaled small n-alkanes from healthy smokers and nonsmokers. Then the concentration variations of exhaled small n-alkanes of four healthy volunteers were analyzed after alcohol consumption to explore the alcohol-hepatoxicity-related oxidative stress. In summary, this work provides new insights for controlling the O2+-participating chemical ionization by adjusting the ion source pressure and develops a novel direct mass spectrometric method for sensitive measurements of mall n-alkanes.

15.
Anal Chim Acta ; 1008: 74-81, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29420946

RESUMO

Small molecule metabolites are widely used as biomarkers in the research field of metabolomics for disease diagnosis and exposure assessment. As a readily available biofluid containing plenty of volatile organic metabolites (VOMs), urine is ideal for non-invasive metabolomic analysis; however, there is still lack of rapid analysis method for VOMs in urine. Here we report a kind of rapid method for urine analysis by employing high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) combined with dynamic purge-injection. Various types of metabolites, such as ketones, alcohols, acids, sulfides, pyrroles and amines were detected directly by simple acidification or alkalization of urines. It is noteworthy that nitrogen-containing compounds, especially polar amines, could be ultrasensitively measured without any derivatization. The analytical capability of the direct HPPI-MS technique was demonstrated by analyzing five valuable metabolites, i.e., toluene, 2,5-dimethylpyrrole, trimethlyamine, styrene, and p-xylene, which exhibited relatively low limits of detection, wide linear range and satisfactory repeatability. Being highly sensitive and humidity-friendly, the whole analytical procedure is easily operated in less than 6 min. Interestingly, a new biomarker 2,5-dimethylpyrrole was exclusively found in the smoker's urine sample besides toluene. The work presents a novel tool for rapid nontarget disease biomarkers screening or target monitoring of specific compounds through the investigation of volatile metabolites in urine.


Assuntos
Fótons , Compostos Orgânicos Voláteis/urina , Humanos , Espectrometria de Massas , Pressão , Fatores de Tempo , Compostos Orgânicos Voláteis/metabolismo
16.
Talanta ; 175: 522-527, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842027

RESUMO

A real-time dynamic measurements of ammonia (NH3) is crucial for understanding the atmospheric nucleation process. A novel method was developed for on line monitoring at the sub-second time scale for the gaseous ammonia in ambient air for months, based on a positive inhaling ion mobility spectrometry (IMS) with a 63Ni ion source. The selective detection of NH3 was achieved using a high resolution IMS with an optimization of the drift tube temperature above 150°C. This method improved the peak-to-peak resolution significantly, thus avoided the interferences of the adjacent peaks to the quantitative analysis of NH3. The time resolution of the IMS was less than 0.1s at a data averaging of 10 times. The limit of detection (LOD) achieved at sub-ppb level while a linear response of peak intensity versus concentration of NH3 in the range of 10-60ppb and 60-400ppb were obtained. The relative standard deviations (RSD), the confidence level and the errors were 1.06%, 95% and ± 0.21ppb by measuring 100ppb NH3 for 100 times. The effect of ambient humidity could be greatly reduced by using the drift temperature of over 150°C. At last, the application of measuring the NH3 concentration evolutions of Dalian city was performed from June 19 to December 3 in 2015. The results illustrated a potential method of using IMS for a real-time measuring atmospheric NH3 at an unprecedented accuracy and sensitivity with long-term stability.

17.
Talanta ; 161: 693-699, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769467

RESUMO

Chlorinated benzenes are typical precursors and indicators for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from waste incinerators. Online and real-time monitoring of chlorobenzenes is a challenge due to their low concentration and complex nature of the flue gas. In this work, a continuous online monitoring system was built for detection of trace chlorinated benzenes based on a time-of-flight mass spectrometer (TOFMS). A single photon ionization (SPI) source based on a radiofrequency-excited windowless vacuum ultraviolet (VUV) lamp was developed for the first time to eliminate the signal attenuation resulting from the contamination of magnesium fluoride windows and to avoid the fragment ions. An automatic enrichment system including three parallel Tenax TA adsorption tubes was designed and coupled to the TOFMS to achieve the required ultrahigh sensitivity. The limits of quantitation at 7.65, 5.37 and 6.77pptv were obtained for monochlorobenzene (MCBz), dichlorobenzene (DCBz) and trichlorobenzene (TrCBz), respectively, within a 29-min analytical period. Moreover, this apparatus was applied to continuously online monitor the actual flue gas from a waste incinerator for three months. During this period, the concentrations of MCBz, DCBz and TrCBz detected in the flue gas were in the range of 100-1200, 50-800 and 50-300pptv, respectively. The relative standard deviation (RSD) of the sensitivity for the windowless VUV lamp ion source was 9.71% evaluated by the internal standard benzene over the 3-months flue gas monitoring. These results demonstrated the capability of this method in long-term analysis of the trace chlorinated benzenes in the flue gas.

18.
Rapid Commun Mass Spectrom ; 30 Suppl 1: 38-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27539413

RESUMO

RATIONALE: Sulfur hexafluoride (SF6 ) gas-insulated switchgear (GIS) is an essential piece of electrical equipment in a substation, and the concentration of the SF6 decomposition products are directly relevant to the security and reliability of the substation. The detection of SF6 decomposition products can be used to diagnosis the condition of the GIS. METHODS: The decomposition products of SO2 , SO2 F2 , and SOF2 were selected as indicators for the diagnosis. A suitcase time-of-flight mass spectrometer (TOFMS) was designed to perform online GIS failure analysis. An RF VUV lamp was used as the photoelectron ion source; the sampling inlet, ion einzel lens, and vacuum system were well designed to improve the performance. RESULTS: The limit of detection (LOD) of SO2 and SO2 F2 within 200 s was 1 ppm, and the sensitivity was estimated to be at least 10-fold more sensitive than the previous design. The high linearity of SO2 , SO2 F2 in the range of 5-100 ppm has excellent linear correlation coefficient R(2) at 0.9951 and 0.9889, respectively. CONCLUSIONS: The suitcase TOFMS using orthogonal acceleration and reflecting mass analyzer was developed. It has the size of 663 × 496 × 338 mm and a weight of 34 kg including the battery and consumes only 70 W. The suitcase TOFMS was applied to analyze real decomposition products of SF6 inside a GIS and succeeded in finding out the hidden dangers. The suitcase TOFMS has wide application prospects for establishing an early-warning for the failure of the GIS. Copyright © 2016 John Wiley & Sons, Ltd.

19.
Anal Chem ; 88(18): 9047-55, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27574033

RESUMO

Photon ionization mass spectrometry (PI-MS) is a widely used technique for the online detection of trace substances in complex matrices. In this work, a new high-pressure photon ionization (HPPI) ion source based on a vacuum ultraviolet (VUV) Kr lamp was developed for time-of-flight mass spectrometry (TOFMS). The detection sensitivity was improved by elevating the ion source pressure to about 700 Pa. A radio frequency (RF)-only quadrupole was employed as the ion guide system following the HPPI source to achieve high ion transmission efficiency. In-source collision induced dissociation (CID) was conducted for accurate chemical identification by varying the voltage between the ion source and the ion guide. The high humidity of the breath air can promote the detection of some compounds with higher ionization potentials (IPs) that could not be well detected by single photon ionization (SPI) at low pressure. Under 100% relative humidity (37 °C), the limits of detection down to 0.015 ppbv (parts per billion by volume) for aliphatic and aromatic hydrocarbons were obtained. This HPPI-TOFMS system was preliminarily applied for online investigations of the exhaled breath from both healthy nonsmoker and smoker subjects, demonstrating its analytical capacity for complicated gases analysis. Subsequently, several frequently reported VOCs in the breath of healthy volunteers, i.e., acetone, isoprene, 2-butanone, ethanol, acetic acid, and isopropanol, were successfully identified and quantified.


Assuntos
Testes Respiratórios/instrumentação , Espectrometria de Massas/instrumentação , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Desenho de Equipamento , Expiração , Humanos , Íons/química , Espectrometria de Massas/métodos , Fótons , Pressão , Raios Ultravioleta , Vácuo
20.
Anal Chem ; 88(10): 5028-32, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27109556

RESUMO

Soft ionization mass spectrometry is one of the key techniques for rapid detection of trace volatile organic compounds. In this work, a novel photoionization-generated dibromomethane cation chemical ionization (PDCI) source has been developed for time-of-flight mass spectrometry (TOFMS). Using a commercial VUV lamp, a stable flux of CH2Br2(+) was generated with 1000 ppmv dibromomethane (CH2Br2) as the reagent gas, and the analytes were further ionized by reaction with CH2Br2(+) cation via charge transfer and ion association. Five typical volatile sulfur compounds (VSCs) were chosen to evaluate the performance of the new ion source. The limits of detection (LOD), 0.01 ppbv for dimethyl sulfide and allyl methyl sulfide, 0.05 ppbv for carbon disulfide and methanthiol, and 0.2 ppbv for hydrogen sulfide were obtained. Compared to direct single photon ionization (SPI), the PDCI has two distinctive advantages: first, the signal intensities were greatly enhanced, for example more than 10-fold for CH3SH and CS2; second, H2S could be measured in PDCI by formation [H2S + CH2Br2](+) adduct ion and easy to recognize. Moreover, the rapid analytical capacity of this ion source was demonstrated by analysis of trace VSCs in breath gases of healthy volunteers and sewer gases.


Assuntos
Espectrometria de Massas/métodos , Sulfetos/análise , Compostos Orgânicos Voláteis/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...