Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634230

RESUMO

Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14 cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.


Assuntos
Membro Posterior , Locomoção , Animais , Membro Posterior/fisiologia , Membro Posterior/anatomia & histologia , Fenômenos Biomecânicos , Camundongos/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Masculino , Feminino , Tíbia/fisiologia , Tíbia/anatomia & histologia , Fêmur/fisiologia , Fêmur/anatomia & histologia
2.
BMC Zool ; 9(1): 3, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311766

RESUMO

Sister to the Chiroptera crown-clade, the 50 million year old Vielasia sigei is suggested to have used laryngeal echolocation based on morphometric analyses. We discuss how Vielasia's discovery influences our understanding of the evolution of echolocation in bats and the insights fossils provide to the lives of extinct species.

3.
J Exp Biol ; 223(Pt 20)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32895327

RESUMO

Hummingbirds, subsisting almost exclusively on nectar sugar, face extreme challenges to blood sugar regulation. The capacity for transmembrane sugar transport is mediated by the activity of facilitative glucose transporters (GLUTs) and their localisation to the plasma membrane (PM). In this study, we determined the relative protein abundance of GLUT1, GLUT2, GLUT3 and GLUT5 via immunoblot using custom-designed antibodies in whole-tissue homogenates and PM fractions of flight muscle, heart and liver of ruby-throated hummingbirds (Archilochus colubris). The GLUTs examined were detected in nearly all tissues tested. Hepatic GLUT1 was minimally present in whole-tissue homogenates and absent win PM fractions. GLUT5 was expressed in flight muscles at levels comparable to those of the liver, consistent with the hypothesised uniquely high fructose uptake and oxidation capacity of hummingbird flight muscles. To assess GLUT regulation, we fed ruby-throated hummingbirds 1 mol l-1 sucrose ad libitum for 24 h followed by either 1 h of fasting or continued feeding until sampling. We measured relative GLUT abundance and concentration of circulating sugars. Blood fructose concentration in fasted hummingbirds declined (∼5 mmol l-1 to ∼0.18 mmol l-1), while fructose-transporting GLUT2 and GLUT5 abundance did not change in PM fractions. Blood glucose concentrations remained elevated in fed and fasted hummingbirds (∼30 mmol l-1), while glucose-transporting GLUT1 and GLUT3 in flight muscle and liver PM fractions, respectively, declined in fasted birds. Our results suggest that glucose uptake capacity is dynamically reduced in response to fasting, allowing for maintenance of elevated blood glucose levels, while fructose uptake capacity remains constitutively elevated promoting depletion of blood total fructose within the first hour of a fast.


Assuntos
Aves , Proteínas Facilitadoras de Transporte de Glucose , Animais , Transporte Biológico , Aves/metabolismo , Frutose , Glucose , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Néctar de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...