Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118922, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614202

RESUMO

Grazing is the most extensive land use in grassland worldwide, wherein the soil microbiome is known to support multiple ecosystem functions. Yet, the experimental impact of livestock grazing and dung deposits on the soil microbiome in degraded grassland remains poorly understood. We examined the effects of sheep dung depositions on the bacterial and fungal microbiome of two grasslands: non-degraded and degraded (long-term overgrazing) in northern China. Specifically, sheep dung was experimentally added to the soil and its effects on the soil microbial community were determined 3 months later (corresponding to livestock excreta deposited throughout the entire growing season of grassland, June to September). Our results showed that sheep dung additions showed negative effects on the soil microbiome of already degraded grassland, while with a diminished impact on the non-degraded grassland. In particular, dung deposition decreased soil microbial Shannon index, notably significantly reducing fungal diversity in degraded grassland. Moreover, sheep dung deposition modifies soil bacterial community structure and diminishes bacterial community network complexity. The alteration of soil pH caused by sheep dung deposition partially explains the decline in microbial diversity in degraded grassland. However, sheep dung did not alter the relative abundance and community composition of bacterial and fungal dominant phyla either in the non-degraded or in the degraded grassland. In conclusion, the short-term deposition of sheep dung exerted a detrimental influence on the microbial community in degraded grassland soil. It contributes new experimental evidence regarding the adverse effects of livestock grazing, particularly through dung deposition, on the soil microbiome in degraded grassland. This knowledge is crucial for guiding managers in conserving the soil microbiome in grazed grasslands.

3.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513257

RESUMO

In this study, we investigated the electronic properties and selective adsorption for CO2 of nickel boride clusters (NiB)n, (n = 1~10) using the first principles method. We optimized the structures of the clusters and analyzed their stability based on binding energy per atom. It was observed that (NiB)n clusters adopt 3D geometries from n = 4, which were more stable compared to the plane clusters. The vertical electron affinity, vertical ionization energy, chemical potential, and highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap were calculated. Our results revealed that (NiB)6 and (NiB)10, with high chemical potential, exhibit a higher affinity for CO2 adsorption due to a charge delivery channel that forms along the Ni→B→CO2 path. Notably, (NiB)10 demonstrated a more practical CO2 desorption temperature, as well as a broader window for the selective adsorption of CO2 over N2. The density of states analysis showed that the enhanced CO2 adsorption on (NiB)10 can be attributed to the synergistic effect between Ni and B, which provides more active sites for CO2 adsorption and promotes the electron transfer from the surface to the CO2 molecule. Our theoretical results imply that (NiB)10 should be a promising candidate for CO2 capture.

4.
Microbiol Spectr ; 11(3): e0366222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37227288

RESUMO

Recent evidence emphasized the role of the microbiota in the etiopathogenesis of rheumatoid arthritis (RA). Indeed, it has been demonstrated that urinary tract infections are implicated in RA pathogenesis. However, a definitive association between the urinary tract microbiota and RA remains to be investigated. Urine samples from 39 patients affected by RA, including treatment-naive patients, and 37 age- and sex-matched healthy individuals were collected. In RA patients, the urinary microbiota showed an increase in microbial richness and a decrease in microbial dissimilarity, especially in treatment-naive patients. A total of 48 altered genera with different absolute quantities were detected in patients with RA. The 37 enriched genera included Proteus, Faecalibacterium, and Bacteroides, while the 11 deficient genera included Gardnerella, Ruminococcus, Megasphaera, and Ureaplasma. Notably, the more abundant genera in RA patients were correlated with the disease activity score of 28 joints-erythrocyte sedimentation rates (DAS28-ESR) and an increase in plasma B cells. Furthermore, the altered urinary metabolites, such as proline, citric acid, and oxalic acid, were positively associated with RA patients, and they were closely correlated with urinary microbiota. These findings suggested a strong association between the altered urinary microbiota and metabolites with disease severity and dysregulated immune responses in RA patients. IMPORTANCE We revealed that the profile of the urinary tract microbiota in RA featured with increased microbial richness and shifted taxa, associated with immunological and metabolic changes of the disease, underlining the interplay between urinary microbiota and host autoimmunity.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Microbiota , Humanos , Artrite Reumatoide/metabolismo , Gravidade do Paciente , Imunidade
5.
J Mol Model ; 29(3): 73, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36820991

RESUMO

BACKGROUND: Chlorine substitution has been considered as one of the key steps of polychlorinated dibenzodioxin/furan (PCDD/Fs) generation. The introduction of oxygen carriers (OCs), especially in chemical looping combustion (CLC), provides the platform of directed regulation for the chlorine substitution process. METHODS: Density functional theory (DFT) calculations with code VASP 5.4 were employed to investigate the free energy of PCDD/Fs adsorption on different surfaces. 12378-PCDD, which is the product of a one-step chlorine substitution for toxic 2378-PCDD, has been selected as the calculation case, and the regulation mechanisms on the inter-isomeric conversion of 12378-PCDD were identified by calculating the energy barrier and action angle. RESULTS: It was found that the chlorine substitution of 12378-PCDD, particularly in 4# position, 9# position, and 6# position, emerged a tendency to increase the difficulty in turn, which conforms to the principle of distal preference. Besides, the influence from CaO adsorption on the crystalline surface of the iron-based oxygen carrier (OC) has been analyzed and it was verified that CaO adsorption can significantly increase the energy barrier for the chlorine substitution of 12378-PCDD. Meanwhile, the action angle was proposed to evaluate the parameters of adsorption process, and the adsorption of CaO can not only change the action angle between the 12378-PCDD molecule and the lattice surface, but also can modulate the energy barrier order of chlorine substitution among PCDD isomers. In addition, the loading component modulation was carried out to further confirm the feasibility of modulating the chloride substitution pathway, which proved the influence degree of loading component. And accordingly, the stretching analysis of the inactive component provides a theoretical basis for the subsequent study of the directional regulation of the PCDDs isomer generation pathway. Finally, the chlorine substitution rules and directed regulation mechanisms of PCDD/Fs isomers were obtained, which provides a modification direction for the structural components of OCs.

6.
Genes Genomics ; 45(4): 531-542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36115009

RESUMO

BACKGROUND: Infertility is a common and rapidly growing health issue around the world. The genetic analysis based on the infertile population is crucial for intervention and treatment. OBJECTIVE: To find candidate gene locus led to azoospermia in Chinese multi-ethnic groups and provide theoretical guidance for the diagnosis of genetic diseases to progressively aggravated infertility patients and sterile offspring with ART. METHODS: The study based on whole-exome sequencing (WES) was presented for genetic characteristic analysis of multi-ethnics and identification of variants related to infertility in Xinjiang area of China. RESULTS: The frequency of pathogenic variants showed significant ethnic differences among four main ethnics in Xinjiang. The population structure analysis confirmed that the Hui was close to the Han population, the Kazak was close to the Uygur population, and there are three ancestry components in the four ethnics. In addition, ten candidate variants potentially regulated azoospermia were detected, and KNTC1 (rs7968222: G > T) was chosen to validate the association. Through the analysis in the valid group, the frequency of rs7968222 (G > T) has a significant difference in the azoospermia population (11.76%, 8/68) and normospermia population (4.63%, 35/756) (P < 0.001). Interestingly, the proportion of people with abnormal follicle-stimulating hormone (FSH) level in the group carrying rs7968222 (G > T) was significantly higher than non-carriers (P < 0.05). Therefore, rs7968222 may regulate spermatogenesis through affecting hormone level. CONCLUSION: Our study establishes the genetics analysis of Northwest China and finds a candidate gene locus KNTC1 (rs7968222: G > T), which is one of the genetic susceptibility factors for male azoospermia.


Assuntos
Azoospermia , Proteínas de Ciclo Celular , Proteínas Associadas aos Microtúbulos , Humanos , Masculino , Azoospermia/genética , População do Leste Asiático , Etnicidade/genética , Sequenciamento do Exoma , Predisposição Genética para Doença/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Ciclo Celular/genética
7.
Front Plant Sci ; 14: 1295114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38205017

RESUMO

This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.

8.
Front Microbiol ; 13: 971449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110305

RESUMO

In this study, we analyzed the fermentation quality, microbial community, and metabolome characteristics of ryegrass silage from different harvests (first harvest-AK, second harvest-BK, and third harvest-CK) and analyzed the correlation between fermentative bacteria and metabolites. The bacterial community and metabolomic characteristics were analyzed by single-molecule real-time (SMRT) sequencing and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS), respectively. After 60 days of ensiling, the pH of BK was significantly lower than those of AK and CK, and its lactic acid content was significantly higher than those of AK and CK. Lactiplantibacillus and Enterococcus genera dominate the microbiota of silage obtained from ryegrass harvested at three different harvests. In addition, the BK group had the highest abundance of Lactiplantibacillus plantarum (58.66%), and the CK group had the highest abundance of Enterococcus faecalis (42.88%). The most annotated metabolites among the differential metabolites of different harvests were peptides, and eight amino acids were dominant in the composition of the identified peptides. In the ryegrass silage, arginine, alanine, aspartate, and glutamate biosynthesis had the highest enrichment ratio in the metabolic pathway of KEGG pathway enrichment analysis. Valyl-isoleucine and glutamylvaline were positively correlated with Lactiplantibacillus plantarum. D-Pipecolic acid and L-glutamic acid were positively correlated with Levilactobacillus brevis. L-phenylalanyl-L-proline, 3,4,5-trihydroxy-6-(2-methoxybenzoyloxy) oxane-2-carboxylic acid, and shikimic acid were negatively correlated with Levilactobacillus brevis. In conclusion, this study explains the effects of different harvest frequencies on the fermentation quality, microbial community, and metabolites of ryegrass, and improves our understanding of the ensiling mechanisms associated with different ryegrass harvesting frequencies.

9.
Front Microbiol ; 13: 938153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118219

RESUMO

Silage exposed to air is prone to deterioration and production of unpleasant volatile chemicals that can seriously affect livestock intake and health. The aim of this study was to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and a combination of LP and LB (PB) on the quality, microbial community and volatile chemicals of Leymus chinensis silage at 0, 4, and 8 days after aerobic exposure. During aerobic exposure, LP had higher WSC and LA contents but had the least aerobic stability, with more harmful microorganisms such as Penicillium and Monascus and produced more volatile chemicals such as Isospathulenol and 2-Furancarbinol. LB slowed down the rise in pH, produced more acetic acid and effectively improved aerobic stability, while the effect of these two additives combined was intermediate between that of each additive alone. Correlation analysis showed that Actinomyces, Sphingomonas, Penicillium, and Monascus were associated with aerobic deterioration, and Weissella, Pediococcus, Botryosphaeria, and Monascus were associated with volatile chemicals. In conclusion, LB preserved the quality of L. chinensis silage during aerobic exposure, while LP accelerated aerobic deterioration.

10.
Nutrients ; 14(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458230

RESUMO

The adverse effects of anti-tuberculosis (TB) drugs in the intestines were related to alteration of the intestinal microbiota. However, there was less information about microbial metabolism on the adverse reactions. This study aimed to explore whether Lactobacillus casei could regulate gut microbiota or short-chain fatty acids (SCFAs) disorders to protect intestinal adverse reactions induced by isoniazid (H) and rifampicin (R). Male Wistar rats were given low and high doses of Lactobacillus casei two hours before daily administration of anti-TB drugs. After 42 days, colon tissue and blood were collected for analysis. The feces at two-week and six-week were collected to analyze the microbial composition and the content of SCFAs in colon contents was determined. Supplementation of Lactobacillus casei increased the proportion of intestinal goblet cells induced by H and R (p < 0.05). In addition, HR also reduced the level of mucin-2 (p < 0.05), and supplementation of Lactobacillus casei restored. After two weeks of HR intervention, a decrease in OTUs, diversity index, the abundance of Bacteroides, Akkermansia, and Blautia, and an increase of the abundance of Lacetospiraceae NK4A136 group and Rumencoccus UCG-005, were observed compared with the control group (p all < 0.05). These indices in Lactobacillus casei intervention groups were similar to the HR group. Six-week intervention resulted in a dramatic reduction of Lacetospiraceae NK4A136 group, butyric acid, valeric acid and hexanoic acid, while an increase of Bacteroides and Blautia (p all < 0.05). Pretreatment with Lactobacillus casei significantly increased the content of hexanoic acid compared with HR group (p < 0.05). Lactobacillus casei might prevent intestinal injury induced by anti-tuberculosis drugs by regulating gut microbiota and SCFAs metabolism.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animais , Antituberculosos/efeitos adversos , Antituberculosos/metabolismo , Caproatos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Intestinos , Lacticaseibacillus casei/metabolismo , Masculino , Probióticos/uso terapêutico , Ratos , Ratos Wistar
11.
Small ; 18(12): e2106868, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088573

RESUMO

In terms of the large-scale hydrogen production by water electrolysis, achieving the bifunctional electrocatalyst with high efficiency and stability at high current densities is of great significance but still remains a grand challenge. To address this issue, herein, one unique hybrid electrode is synthesized with the local photothermal effect (LPTE) by supporting the novel ternary nickel (Ni)bismuth (Bi)sulfur (S) nanosheet arrays onto nickel foam (Ni3 Bi2 S2 @NF) via a one-pot hydrothermal reaction. The combined experimental and theoretical observations reveal that owing to the intrinsic LPTE action of Bi, robust phase stability of Ni3 Bi2 S2 as well as the synergistic effect with hierarchical configuration, upon injecting the light, the as-prepared Ni3 Bi2 S2 exhibits remarkably improved efficiency of 44% and 35% for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Such enhanced values are also comparable to those performed in working media heated to 80 °C. In addition, the overall water splitting system by using Ni3 Bi2 S2 @NF as bifunctional electrodes only delivers an ultralow voltage of 1.40 V at 10 mA cm-2 under LPTE, and can be stable more than 36 h at 500-1000 mA cm-2 . More broadly, even worked at 0-5 °C, alkaline simulated seawater and high salt seawater, the electrodes still show apparent LPTE effect for improving catalytic efficiency.

12.
Front Microbiol ; 13: 1072140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699609

RESUMO

Introduction: To prepare high-quality silage, we studied the chemical composition, silage fermentation, characterization, and identification of lactic acid bacteria (LAB) associated with the silage fermentation of native grass on the Inner Mongolian Plateau. Methods: LAB were isolated from fresh native grass and their silage, and silages were prepared using a small-scale fermentation system with 2-3 cm length in plastic bags. Results: The dominant species of native grasses used were Stipa baicalensis, Leymus chinensis, Cleistogenes squarrosa, Melissilus ruthenicus and Pulsatilla turczaninovii, which contained 47.83-59.43 % moisture, 55.12-67.74 % neutral detergent fiber (NDF), and 8.72-14.55 crude protein (CP), and these nutrients did not change greatly during ensiling. Good preservation with a relatively low pH (below 4.44) and high (p < 0.05) lactic acid content (>0.58) was obtained after ensiling. Based on the morphological and biochemical characteristics, these isolates were divided into 12 groups (A-L). All isolate strains were gram-positive and catalase-negative bacteria that produce lactic acid from glucose. Group A-K were cocci, while group L was rod-shaped. Group A-E formed D-lactic acid, but group H-K formed L-lactic acid, and other groups formed DL-lactic acid. Group A-E were heterofermentative, and Group F-L were homofermentative types of LAB. According to the 16S rRNA gene sequences analysis, strains were identified as genus Leuconostoc (A, B, and C), Weissellla (D, E), Pediococcus (F, G), Enterococcus (H, I, J and K), and Lactiplantibacillus (L). Enterococcus (E.) faecium (29.17%, percentage of total isolates) and Pediococcus (P.) acidilactici (18.75%) were the most frequently occurring dominant species. Discussion: This study suggests that the native grasses contained abundant LAB species, and they can be used as good-quality silages in animal husbandry. In addition, the strains P. acidilactici and E. faecium were the most frequently isolated from native grass silages as dominant species which can be a potentially excellent inoculant for native grass silage.

13.
Front Microbiol ; 13: 1054612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713224

RESUMO

Introduction: This study aimed to investigate the effects of different growth stages (booting period-SYK; initial flowering-SCK; full flowering-SSK) on the fermentation quality, microbial community, metabolic pathways and metabolomic characteristics of Italian ryegrass silage. Methods: Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) were used to analyze bacterial communities and metabolites, respectively. Results: After 60 d of fermentation, SYK had the lowest pH and the highest lactic acid content, which were significantly different from the other groups. The bacteria with the highest abundance in SYK, SCK and SSK groups were Lactiplantibacillus plantarum (63.98%), Weissella minor (28.82%) and Levilactobacillus brevis (64.81%), respectively. In addition, among the main differential metabolites in different growth stages, the number of amino acids was the most, and the corresponding metabolic pathways were mainly amino acid metabolic pathways. The biosynthesis of phenylalanine, tyrosine and tryptophan was significantly enriched (p<0.01) at booting stage and full flowering stage. Purine metabolism and ABC transporter pathway were significantly enriched at the initial flowering (p<0.001). Lactiplantibacillus plantarum had a negative correlation with xanthine and ganoderic acid F. Weissella minor had a positive correlation with D-Mannose and ganoderic acid F. Levilactobacillus brevis had a positive correlation with xanthine, and Latilactobacillus sakei had a positive correlation with cinnamic acid, D-Mannose, 2-Hydroxycinnamic acid and uridine. Discussion: In conclusion, this study reveals the interaction mechanisms between ryegrass raw materials at different growth stages and epiphytic microorganisms during ensiling fermentation, providing new ideas for screening functional lactic acid bacteria, and laying a theoretical foundation for the production of safe and high-quality silage.

14.
Front Microbiol ; 12: 688695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707575

RESUMO

This study investigated the fermentation quality of alfalfa grown in different salt stress regions in China. Following the production of silage from the natural fermentation of alfalfa, the interplay between the chemical composition, fermentation characteristics, and microbiome was examined to understand the influence of these factors on the fermentation quality of silage. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1%0 (CK); (b) 1-2%0 (LS); (c) 2-3%0 (MS); (d) 3-4%0 (HS). The pH of the silage was high (4.9-5.3), and lactic acid content was high (26.3-51.0 g/kg DM). As the salt stress increases, the NA+ of the silages was higher (2.2-5.4 g/kg DM). The bacterial alpha diversities of the alfalfa silages were distinct. There was a predominance of desirable genera including Lactococcus and Lactobacillus in silage produced from alfalfa under salt stress, and this led to better fermentation quality. The chemical composition and fermentation characteristics of the silage were closely correlated with the composition of the bacterial community. Furthermore, NA+ was found to significantly influence the microbiome of the silage. The results confirmed that salt stress has a great impact on the quality and bacterial community of fresh alfalfa and silage. The salt stress and plant ions were thus most responsible for their different fermentation modes in alfalfa silage. The results of the study indicate that exogenous epiphytic microbiota of alfalfa under salt stress could be used as a potential bioresource to improve the fermentation quality.

15.
PeerJ ; 9: e11729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316396

RESUMO

BACKGROUND: Globally, there is a large amount of salinized land. These soils have varying degrees of salt stress, causing ionic toxicity and osmotic stress on plants. However, it is not clear how different degrees of salt stress affect plant nutrients and microbial communities. Thus, a comprehensive understanding of plant major nutrients and microbial communities response to salt stress is desirable. RESULTS: We analyzed the main nutrients of the salt-tolerant ZhongMu No. 3 alfalfa variety planted in a salt stress environment. In mild and moderate group, the protein content and fatty acid content of alfalfa were the highest, indicating the best nutritional value. The severe group of salt stress affected the growth and development of alfalfa, as manifested by a decrease in the nutritional quality of alfalfa. Pseudomonas and Sphingobacterium that from alfalfa stem and leaf endophytes also increased with an increase in salt stress. In contrast, Sphingomonas, Methylobacterium, and Rhizobium decrease with increasing salt stress. Methylobacterium and Rhizobium have extremely significant differences in response to salt stress, and Exiquobacterium also shows significant differences. CONCLUSIONS: Soil salinity would be an important factor beyond which alfalfa nutrient quality and microbial community structure change. This study identified key levels of salt stress that may affect the nutrient quality and microbial community structure. These findings enhance our understanding of the effects of salt stress on the nutritional quality of alfalfa and provide a reference for the sustainable use of salinized soil in the future.

16.
Food Funct ; 12(15): 6878-6888, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34126630

RESUMO

Helicobacter pylori-induced oxidative stress plays an important role in gastric diseases. H. pylori disturbs gut microbiota. The objective is to investigate the effects of cranberry beverages on oxidative stress biomarkers and gut microbiota in H. pylori positive subjects. 171 H. pylori positive participants were randomly assigned to one of the three groups: high-dose (HCb; 480 mL cranberry beverage), low-dose (LCb; 240 mL cranberry beverage plus 240 mL placebo) and placebo (480 mL). Subjects consumed the beverages daily for 4 weeks. Fasting blood samples were analyzed for oxidative stress biomarkers. The intestinal microbiome was analyzed by 16S rRNA sequencing. Compared with the placebo, HCb resulted in a significantly higher increase of total antioxidant capacity (mean ± SD: 1.39 ± 1.69 IU mL-1vs. 0.34 ± 1.73 IU mL-1; p < 0.001) and a higher decrease of the lipid peroxidation product malondialdehyde (-7.29 ± 10.83 nmol mg-1vs. -0.84 ± 15.66 nmol mg-1; p = 0.025). A significant dose-dependent effect on the elevation of superoxide dismutase was observed (p < 0.001). Microbiome data showed that consuming HCb and LCb led to a significant reduction of Pseudomonas (p < 0.05). In conclusion, the current research showed that consuming cranberry beverages significantly improved the antioxidant status in H. pylori positive subjects, which may be related to the reshaping of gut microbiota.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Helicobacter/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas , Vaccinium macrocarpon , Adulto , Método Duplo-Cego , Feminino , Sucos de Frutas e Vegetais , Helicobacter pylori , Humanos , Masculino , Pessoa de Meia-Idade , Preparações de Plantas/administração & dosagem , Preparações de Plantas/farmacologia
17.
Mem Cognit ; 49(1): 181-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32676885

RESUMO

Two experiments were conducted to investigate the extent to which the lexical tone can affect spoken-word recognition in Chinese using a printed-word paradigm. Participants were presented with a visual display of four words-namely, a target word (e.g., , xiang4xian4, "quadrant"), a tone-consistent phonological competitor (e.g., , xiang4ce4, "photo album"), or a tone-inconsistent phonological competitor (e.g., , xiang1cai4, "coriander"), and two unrelated distractors. Simultaneously, they were asked to listen to a spoken target word presented in isolation (Experiment 1) or embedded in neutral/predictive sentence contexts (Experiment 2), and then click on the target word on the screen. Results showed significant phonological competitor effects (i.e., the fixation proportion on the phonological competitor was higher than that on the distractors) under both tone conditions. Specifically, a larger phonological competitor effect was observed in the tone-consistent condition than in the tone-inconsistent condition when the spoken word was presented in isolation and the neutral sentence contexts. This finding suggests a partial role of lexical tone in constraining spoken-word recognition. However, when embedded in a predictive sentence context, the phonological competitor effect was only observed in the tone-consistent condition and absent in the tone-inconsistent condition. This result indicates that the predictive sentence context can strengthen the role of lexical tone.


Assuntos
Tecnologia de Rastreamento Ocular , Percepção Auditiva , China , Humanos , Idioma , Fonética , Percepção da Fala
18.
Iran J Immunol ; 17(1): 14-25, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32224538

RESUMO

BACKGROUND: Melanoma is a common and malignant cutaneous tumor, which is responsible for a large proportion of skin cancer deaths. Dendritic cell (DC)-based vaccines have achieved positive results in the treatment of melanoma because of their ability to induce cytotoxic response to facilitate tumor elimination. OBJECTIVE: To improve the efficacy of dendritic cell-based vaccines by the adjuvant activity of Helicobacter pylori neutrophil activating protein (HP-NAP). METHODS: The recombinant HP-NAP (rHP-NAP) was expressed by using prokaryotic expression system. DCs were cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. After treating with rHP-NAP, the maturation of DCs and dendritic cell-based vaccine were assayed by using flow cytometry and qRT-PCR. The activation and proliferation of T cells were measured by FCM, ELISA and MTT methods. The tumor specific cytotoxic response to resistant B16F10 was detected by using lactate dehydrogenase-release assay and qRT-PCR. RESULTS: The rHP-NAP, prepared from E. coli prokaryotic expression system, was able to significantly promote the maturation of dendritic cell-based vaccine loaded with tumor cell lysate (TCL) of B16F10 (DC-B16F10-TCL). Furthermore, it effectively induced the activation and proliferation of T cells and tumor specific cytotoxic response to resistant B16F10 melanoma tumor cells. CONCLUSION: These results suggested that rHP-NAP possesses the potential for use as an adjuvant of dendritic cell-based vaccine in anti-melanoma treatment.


Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Bactérias/farmacologia , Vacinas Anticâncer/farmacologia , Células Dendríticas/transplante , Melanoma Experimental , Animais , Proteínas de Bactérias/imunologia , Vacinas Anticâncer/imunologia , Humanos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Receptores Toll-Like/agonistas
19.
Phys Chem Chem Phys ; 22(8): 4692-4698, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32057035

RESUMO

The catalytic removal of methane (CH4) in exhaust emissions of natural gas-fueled vehicles is still a major challenge for automotive manufacturers because of the high CH3-H bond energy and high concentrations of water (H2O). Density functional theory (DFT) calculations were employed to investigate the adsorption of CH4 and H2O, as well as the activation of CH4, on the surface of a Pd-Pt bimetal supported by γ-Al2O3. These are significant factors for catalytic combustion. Pt addition weakened the bonding of the intermediates and increased the availability of electrons on the surface. Besides this, the γ-Al2O3 surface and Pt were both beneficial for preventing the aggregation of clusters. CH4 and H2O adsorption, as well as the detailed mechanism of CH4 activation on the Pd-Pt/γ-Al2O3 surfaces were simulated. The results showed that a Pt/Pd ratio of three resulted in the best catalytic activity among the different ratios examined in the presence of H2O.

20.
Int Immunopharmacol ; 80: 106224, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31991371

RESUMO

Atherosclerosis is the primary cause of many cardiovascular diseases. Endothelial dysfunction is recognized as a crucial early event in atherosclerotic lesion formation. Tricetin is a natural flavonoid derivative that has demonstrated a wide range of therapeutic properties. This study investigates the protective effect of tricetin in cultured endothelial cells. The results of our study show that tricetin suppressed oxidized low-density lipoprotein (ox-LDL)-induced expression of pro-inflammatory monocyte chemotactic protein-1 (MCP-1) and interleukin-1ß (IL-1ß), as well as the generation of reactive oxygen species (ROS). Furthermore, our findings indicate that tricetin suppressed ox-LDL-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). At the cellular level, the presence of tricetin inhibited ox-LDL-induced monocyte adhesion to endothelial cells. Mechanistically, we showed that tricetin suppressed the induction of the endothelial receptor for ox-LDL, lectin-like ox-LDL receptor-1 (LOX-1), and the transcriptional factor early growth response 1 (Egr-1) as well as extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) activation. These data demonstrate that tricetin is a natural protective agent in vascular endothelial cells, indicating that tricetin could have a potentially beneficial effect in the modulation of atherosclerosis.


Assuntos
Cromonas/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Endotélio Vascular/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Linhagem Celular , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Monócitos , Espécies Reativas de Oxigênio , Receptores Depuradores Classe E/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...