Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 62(13): 965-970, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659468

RESUMO

The chemical structure evolution of coal, which is important for understanding coalification and the accompanying volatile and possible oil generation, is generally thought to be influenced by temperature, time and confining pressure. Though evidence concerning the impacts of stress on the chemical structure has accumulated for many years and some hypotheses have been proposed, the mechanism remains controversial. Recent years have seen a breakthrough in mechanochemistry, which proves that stress can act on the molecule directly to initiate or accelerate reactions by deforming the chemical bonds. The progress in mechanochemistry gives researchers incentive to consider how stress works on the chemical structure of coals. Preliminary quantum chemical calculations have been performed on the macromolecule of anthracite to explain the mechanism of gas generation during the deformation experiments at low temperatures. This paper briefly reviews the evidence regarding the impacts of stress on the chemical structure of coals and introduces the recent achievements in the mechanism research. To further investigate this problem, more work should be undertaken by researchers from both geology and quantum chemistry fields.

2.
Sci Total Environ ; 543(Pt A): 514-523, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26605831

RESUMO

Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geological conditions and mining technologies, previous efforts to estimate fugitive methane emissions from coal mining in China has led to disagreeing results. This paper proposes a new calculation methodology to determine fugitive methane emissions from coal mining based on the domestic analysis of gas geology, gas emission features, and the merits and demerits of existing estimation methods. This new approach involves four main parameters: in-situ original gas content, gas remaining post-desorption, raw coal production, and mining influence coefficient. The case studies in Huaibei-Huainan Coalfield and Jincheng Coalfield show that the new method obtains the smallest error, +9.59% and 7.01% respectively compared with other methods, Tier 1 and Tier 2 (with two samples) in this study, which resulted in +140.34%, +138.90%, and -18.67%, in Huaibei-Huainan Coalfield, while +64.36%, +47.07%, and -14.91% in Jincheng Coalfield. Compared with the predominantly used methods, this new one possesses the characteristics of not only being a comparably more simple process and lower uncertainty than the "emission factor method" (IPCC recommended Tier 1 and Tier 2), but also having easier data accessibility, similar uncertainty, and additional post-mining emissions compared to the "absolute gas emission method" (IPCC recommended Tier 3). Therefore, methane emissions dissipated from most of the producing coal mines worldwide could be more accurately and more easily estimated.

3.
ScientificWorldJournal ; 2014: 560450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126601

RESUMO

The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m(2)/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.


Assuntos
Carvão Mineral/análise , Fenômenos Geológicos , Nanoporos/ultraestrutura , Adsorção , China , Microscopia Eletrônica de Varredura , Nitrogênio/química , Porosidade
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2176-82, 2011 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-22007412

RESUMO

The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(8): 1216-20, 2005 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-16329484

RESUMO

Fourier transform infrared spectroscopy (FTIR) was applied to the study of the stress effect of compositions of macromolecular structure in tectonically deformed coals. The results showed that in different kinds of tectonically deformed coals, the absorption band of aromatic structure, aliphatic structure and oxygen functional groups nearly consistent in the peak wave number, but the intensity of the peak is different which is justly influenced by different deformation degree and deformation mechanism of tectonically deformed coals under tectonic stress. In the metamorphic and deformed environments of the low, middle and high coal rank, for tectonically deformed coals, with the increasing stress, hydrogen-enriched degree and oxygen-enriched degree decrease, while the degree of ring condensation increases. But there are differences in the change of compositions contents of macromolecular structure. This might indicate that the FTIR could be used in the stress effect of compositions of macromolecular structure in tectonically deformed coals.


Assuntos
Carvão Mineral/análise , Hidrocarbonetos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Carvão Mineral/classificação , Hidrocarbonetos/química , Estrutura Molecular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA