Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 395: 110997, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588969

RESUMO

It is generally accepted that low vitamin D (VD) levels are associated with a high prevalence factor for Inflammatory bowel disease (IBD). IBD patients have observed higher levels of lipopolysaccharide (LPS), ALT, and AST than healthy people. Gut-derived LPS causes inflammatory injury in the liver and kidney. The VD-metabolizing mechanism is involved in the liver and kidney, which means IBD might impact VD metabolism. However, whether IBD affects VD metabolism has not been studied. In vitro LPS resulted in decreased CYP2R1 in liver cells as well as decreased CYP27B1 and increased CYP24A1 in kidney cells, revealing that LPS changed the activities of several hydroxylases. Mice with acute colitis had an increased LPS in serum and liver with mild hepatic injuries, while mice with chronic colitis had a significant elevation of LPS in serum, liver, and kidney with hepatorenal injuries. Thus, the liver hydroxylase for VD metabolism would be the first to be affected in IBD. Consequently, serum 25-hydroxyvitamin D declined dramatically with a significant elevation of 24,25-dihydroxyvitamin D and 1,24,25-trihydroxyvitamin D. Unchanged serum levels of 1,25-dihydroxyvitamin D might be the result of other factors in vivo. In acute colitis, a small dosage (4 IU/day) of cholecalciferol could protect the colon, decrease the serum level of LPS, and finally increase serum 25-hydroxyvitamin D. However, this improvement of cholecalciferol was fading in chronic colitis. These results suggested that VD supplementations for preventing and curing IBD in the clinic should consider hepatorenal hydroxylases and be employed as soon as possible for a better outcome.


Assuntos
Colite , Lipopolissacarídeos , Fígado , Vitamina D , Animais , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/sangue , Vitamina D/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colite/tratamento farmacológico , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Humanos , Camundongos Endogâmicos C57BL , Vitamina D3 24-Hidroxilase/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Sulfato de Dextrana
2.
Adv Sci (Weinh) ; : e2400206, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639442

RESUMO

Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.

3.
Phytomedicine ; 128: 155465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471319

RESUMO

BACKGROUND: Liver fibrosis (LF) is a pathological process of the liver that threatens human health. Currently, effective treatments are still lacking. Esculin, a prominent constituent found in the Fraxinus rhynchophylla. (bark), Aesculus hippocastanum. (bark), and Cichorium intybus. (herb), has been shown to possess significant anti-inflammatory, antioxidant, and antibacterial properties. However, to date, there have been no studies investigating its potential efficacy in the treatment of LF. OBJECTIVE: The study aims to investigate the therapeutic effect of esculin on LF and elucidate its potential molecular mechanism. METHODS: Carbon tetrachloride (CCl4) was injected intraperitoneally to induce LF in mice, and transforming growth factor ß1 (TGF-ß1) was injected to induce LX-2 cells to investigate the improvement effect of esculin on LF. Kit, histopathological staining, immunohistochemistry (IHC), immunofluorescence (IF), polymerase chain reaction (PCR), and western blot (WB) were used to detect the expression of fiber markers and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway in liver tissue and LX-2 cells. Finally, molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) were used to verify the targeting between Nrf2 and esculin. RESULTS: Esculin significantly inhibited CCl4-induced hepatic fibrosis and inflammation in mice. This was evidenced by the improvement of liver function indexes, fibrosis indicators, and histopathology. Additionally, esculin treatment prominently reduced the levels of pro-inflammatory factors, oxidative stress, and liver Fe2+ in CCl4-induced mice. In vitro studies also showed that esculin treatment significantly inhibited TGF-ß1-induced LX-2 cell activation and decreased alpha-smooth muscle actin (α-SMA) and collagen I expression. Mechanism experiments proved that esculin can activate the Nrf2/GPX4 signaling pathway and inhibit liver ferroptosis. However, when LX-2 cells were treated with the Nrf2 inhibitor (ML385), the therapeutic effect of esculin significantly decreased. CONCLUSION: This study is the first to demonstrate that esculin is a potential natural active ingredient in the treatment of LF, which can inhibit the activation of hepatic stellate cells (HSC) and improve LF. Its therapeutic effect is related to the activation of the Nrf2/GPX4 signaling pathway.


Assuntos
Tetracloreto de Carbono , Esculina , Células Estreladas do Fígado , Cirrose Hepática , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Esculina/farmacologia , Humanos , Glutationa Peroxidase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Fígado/efeitos dos fármacos , Fígado/metabolismo
4.
Int Immunopharmacol ; 124(Pt A): 110838, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633235

RESUMO

Colorectal cancer (CRC) is a growing concern due to its high morbidity and mortality, and the search for effective and less toxic active substances against inflammatory bowel diseases has been a hot topic in the research and development of drugs against CRC. It is reported that monotropein isolated from the roots of Morinda officinalis, can improve Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice, but its therapeutic effects and mechanisms for CRC treatment are still to be investigated. In the present study, we first used molecular docking, BLI, CESTA, and DARTS methods to detest whether monotropein targets VDR proteins. In addition, we used tumor cell conditioned co-culture and four models of macrophage polarisation to investigate the regulation of four macrophage polarisations by monotropein using RT-PCR, IF and western blot. Furthermore, we further validated the target of action of monotropein for the treatment of Azoxymethane (AOM)/DSS induced colitis associated cancer (CAC) using knockout animals. Meanwhile, we further explored the mechanism of action of monotropein in regulating polarisation by detecting JAK/STAT1-related genes and proteins. Molecular docking and biofilm interference techniques showed that monotropein bound to the VDR, and additional results from CESTA and DARTS suggested that VDR proteins are targets of monotropein. Furthermore, in tumor cell conditioned co-cultures or LPS + IFN-γ induced RAW264.7 cells, VDR translocation to the nucleus was reduced, JAK1/STAT1 signaling pathway proteins were up-regulated, and macrophages were polarised towards the M1-type after monotropein intervention. Animal models in which normal VDR or myeloid VDR was knocked out confirmed that JAK1 levels in intestinal tissues were increased after monotropein intervention, macrophages were polarised towards the M1 type, and CAC paracarcinomas were ameliorated. Taken together, the present study concluded that monotropein inhibited colitis-associated cancers through macrophage polarisation regulated by VDR/JAK1/STAT1.

5.
Eur J Pharmacol ; 942: 175504, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641101

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome of hepatic parenchymal cell steatosis caused by excessive lipid deposition, which is the chronic liver disease with the highest incidence in China. Asperuloside (ASP), a kind of iridoid compound, possesses natural pharmacological effects of anti-tumor, anti-inflammatory, antioxidant and anti-obesity. However, whether ASP can improve NAFLD remains unclear. PURPOSE: We aimed to investigate the effect of ASP on NAFLD mice induced by high-fat diet (HFD), and explore its mechanism in vivo and in vitro. METHODS: Pharmacodynamics of ASP was studied by HFD induction in NAFLD mice. HepG2 cells were induced by palmitic acid (PA) as cell model to investigate the effect of ASP on lipid deposition and inflammatory infiltration. Expression of Adenosine monophosphate - activated protein kinase (AMPK) signaling pathway and NOD-like receptor pyrin containing 3 (NLRP3) inflammasome were detected by Western blot and RT-PCR. Cytokines IL-1ß and TNF-α were detected by ELISA. RESULTS: ASP alleviated liver injury and inflammatory damage in mice with NAFLD. In addition, ASP improved lipid deposition as well as inflammatory response in HFD-induced NAFLD mice and PA-stimulated HepG2 cells. ASP ameliorated lipid deposition and inflammatory response by regulating the p-AMPK/SREBP-1c signaling pathway and NLRP3 inflammasome. CONCLUSION: Our results suggest that ASP improve lipid deposition and inflammatory infiltration in NAFLD mice via regulating the AMPK/SREBP-1c signaling pathway and NLRP3 inflammasome, which may be an effective candidate for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamassomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
6.
J Agric Food Chem ; 71(1): 546-556, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538589

RESUMO

It is extremely important to promote angiogenesis-dependent osteogenesis and ameliorate bone loss for the prevention and treatment of osteoporosis (OP) development. Vitexin, as one of the major active components in pigeonpea leave, promoted the proliferation of osteoblast and HUVECs in hypoxia. The present study aimed to investigate the effect of vitexin on alleviating osteoporosis in ovariectomized (OVX) rats and further explore its underlying mechanisms. Herein, the OVX rat model was established and treated with vitexin (10 mg kg-1) for 3 months. After being sacrificed, we performed hematoxylin-eosin (H&E) staining and micro-computed tomography (micro-CT) to assess bone mass, which found that trabecular bone was damaged in the OVX rat model. Vitexin could repair bone injury and promote osteoblast biochemical indicators and angiogenesis indicators. Furthermore, EAhy926 cells were used to further explore the effect of vitexin on improving hypoxia-induced endothelial injury in vitro. Vitexin had a protective effect on hypoxia-treated EAhy926 cells and up-regulated vitamin D receptor (VDR) signaling and promoted phosphorylation of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and endothelial NO synthase (eNOS), which enhanced endothelial cell migration and tube formation. VDR small-interfering RNA (siRNA) transfection significantly decreased both VDR and p-eNOS proteins, and VDR siRNA transfection + vitexin could not further increase VDR and downstream proteins. Overall, this study presented that vitexin regulates angiogenesis and osteogenesis in ovariectomy-induced osteoporosis of rats via the VDR/eNOS signaling pathway.


Assuntos
Osteoporose , Fosfatidilinositol 3-Quinase , Feminino , Ratos , Animais , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Microtomografia por Raio-X , Osteoporose/etiologia , Osteoporose/genética , Transdução de Sinais , RNA Interferente Pequeno , Ovariectomia/efeitos adversos , Receptores de Calcitriol/genética
7.
J Agric Food Chem ; 70(39): 12525-12534, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36135333

RESUMO

Patients with ulcerative colitis (UC) have been found to be frequently associated with secondary liver injury (SLI). In this study, we investigated the protective effect of GA on dextran sodium sulfate (DSS)-induced SLI in mice and its mechanism. The SLI was established by adding 4% DSS in the drinking water of mice, and the effects of GA (5, 20 mg/kg, p.o., once a day for 7 days) in hepatic tissues were analyzed. HepG2 cells were induced by lipopolysaccharide (LPS) to detect the effect of GA on ferroptosis and the underlying mechanism. Pathological damage was determined by H&E. Liver parameters (AST and ALT), antioxidant enzyme activities (MDA and SOD), and the level of Fe2+ in the liver were detected by kits. Cytokine levels (TNF-α, IL-1ß, and IL-6) and Gpx4 activity in the liver were detected by ELISA. Finally, the activation of nuclear factor erythroid 2-like 2 (Nrf2) was detected to explore the mechanism. The results indicated that GA significantly attenuated DSS-induced hepatic pathological damage, liver parameters, and cytokine levels and increased the antioxidant enzyme activities. Moreover, GA attenuated ferroptosis in DSS-induced liver injury and upregulated Gpx4 expression in DSS-induced mice. Mechanistic experiments revealed that GA activated Nrf2 in mice. Taken together, this study demonstrates that GA can alleviate ferroptosis in SLI in DSS-induced colitis mice, and its protective effects are associated with activating the Nrf2-Gpx4 signaling pathway.


Assuntos
Colite , Água Potável , Ferroptose , Animais , Antioxidantes/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Diarileptanoides , Interleucina-6/farmacologia , Lipopolissacarídeos/efeitos adversos , Fígado/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
J Agric Food Chem ; 70(38): 12041-12054, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124900

RESUMO

Vitexin, one of the major active components in hawthorn, has been shown to possess multiple pharmacological activities. Here, we sought to investigate the effect of vitexin on an ameliorating dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model and further explored its potential mechanism. The results indicated that vitexin administration could significantly alleviate the signs of colitis via suppressing body weight loss, reducing disease activity index (DAI) score, and mitigating colonic damage. Also, vitexin treatment in colitis mice markedly inhibited the production of pro-inflammation cytokines (such as IL-1ß, IL-6, and TNF-α). Meanwhile, vitexin also could markedly down-regulate the phosphorylation levels of p65, IκB, and STAT1. Moreover, vitexin also dose-dependently increased the expressions of muc-2, ZO-1, and occludin proteins in colonic tissues of colitis mice. Further studies revealed that vitexin dramatically modulated the disturbed intestinal flora in colitis mice. Vitexin is beneficial for regulating abundances of some certain bacteria, such as Bacteroides, Helicobacter, Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. Interestingly, the correlation analysis indicated that key microbes were strongly correlated with colitis features, such as pro-inflammatory cytokines and gut barrier. Collectively, these results demonstrated that vitexin treatment alleviated inflammation, intestinal barrier dysfunction, and intestinal flora dysbiosis in colitis mice. Vitexin is expected to be a promising compound for UC treatment.


Assuntos
Apigenina , Colite Ulcerativa , Colite , Animais , Apigenina/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Pharmacol ; 13: 882304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662715

RESUMO

Objective: Osteoarthritis (OA) is a degenerative chronic disease that most often occurs in the knee joint. Studies have shown that some food supplements, such as curcumin and chondroitin sulfate, are effective in treating knee osteoarthritis (KOA) by exhibiting different protective effects. In this study, we further investigated the combined therapeutic effects of curcumin and chondroitin sulfate on cartilage injury in rats with arthritis. Methods: An experimental KOA model was induced by monosodium iodoacetate (MIA) in rats. All rats were randomly divided into five groups: Ctrl (control), model (saline), Cur (20 mg/kg curcumin in saline), CS (100 mg/kg chondroitin sulfate in saline), and CA (20 mg/kg curcumin and 100 mg/kg chondroitin sulfate in saline); drugs were given 2 weeks after MIA injection. The histomorphological changes of cartilage were observed by safranin fast green staining, H&E staining, and micro-CT scanning. Also, the levels of PGE2, TNF-α and IL-1ß in the arthral fluid and serum were determined by the ELISA kits. The activities of SOD, CAT, COMP, MMP-3, and type II collagen were detected by biochemical kits. The expressions of TLR4, p-NF-κB, NF-κB, and COX-2 in cartilage were detected by Western blot. Results: Data show that serum levels of IL-1ß (p < 0.05), SOD (p < 0.0001), and MMP-3 (p < 0.001) were downregulated significantly in the CA group when compared to those in the model group. Meanwhile, obvious repair of cartilage with higher contains collagen II (p < 0.0001) could be observed in the CA group than the ones in Cur or CS group. In addition, significant downregulation of the expression of p-p65/p65 (p < 0.05) was found in the CA group. Conclusion: Our findings showed that combined administration of curcumin and chondroitin sulfate could exert better repair for KOA in rat models. This may hold great promise for discovering potential drugs to treat KOA and may improve treatment options for it.

10.
Phytomedicine ; 101: 154070, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523114

RESUMO

BACKGROUND: Asperuloside is a natural compound extracted from various herbs with several bioactivities. Its effects on anti-inflammation and anti-tumor indicated that asperuloside might prevent colorectal cancer developing from inflammatory bowel diseases (IBD). But there were few reports about the efficacy and mechanism of asperuloside on improving colorectal cancer. It has been reported that vitamin D receptor (VDR) could regulate the expression of SMAD3. In previous study, asperuloside could significantly improve the expression of VDR and reduced Smad3 mRNA in IEC-6 cell. PURPOSE: The present study was aimed to investigate the potential mechanism of asperuloside on inhibiting epithelial-mesenchymal transition (EMT) in colitis associated cancer. STUDY DESIGN: First, in LPS-injured IEC-6 cell, asperuloside inhibited phosphorylated p65 (p-p65) level, improved VDR expression and reduced Smad3 mRNA. Second, we wonder the relationship between VDR signaling and nucleus factor-kappaB (NF-κB) signaling during asperuloside on reducing Smad3 mRNA. And then, the effect of asperuloside on inhibiting EMT development through VDR/Smad3 was investigated. Finally, we testified the effect of asperuloside on protecting against colitis associated cancer (CAC) by inhibiting EMT development through VDR/Smad3. METHODS: Pyrrolidinedithiocarbamate ammonium (PDTC) was used for established NF-κB-inhibited IEC-6 cell. This cell was applied for investigating the relationship between NF-κB and VDR of asperuloside on inhibiting Smad3. VDR-inhibited cell was established by small interfering RNA (siRNA) of VDR and was employed to investigate the role of VDR for asperuloside on decreasing Smad3. Transforming growth factor ß1 (TGFß1) was used for inducing EMT/fibrosis in IEC-6 cell. TGFß1-stimulated cell was used for testifying the effect of asperuloside on inhibiting EMT development. AOM/DSS-induced CAC was established to investigate the effect of asperuloside on suppressing cancer development. RESULTS: Asperuloside inhibited the level of p-p65 which was up-regulated by LPS. Asperuloside could up-regulate VDR signaling and reduce Smad3 mRNA in NF-κB-knockdown IEC-6 cells. Asperuloside failed to reduce Smad3 mRNA due to VDR knockdown, which implied that asperuloside might down-regulate Smad3 mRNA dependently on activation of VDR signaling and independently on inhibiting NF-κB signaling. Asperuloside exhibited significant prevention of EMT development in TGFß1-induced IEC-6 cell (EMT cell) and mice CAC. Asperuloside reduced the transform of epithelial phenotype into motile mesenchymal phenotype in EMT cell along with decreasing levels of EMT markers by inhibiting Smad3 mRNA via activation of VDR. In mice with CAC, expression of VDR in colon was improved by asperuloside. Symptoms of colitis, tumor number and tumor size were significantly inhibited by asperuloside. Suppressed EMT development was determined by reduced α-SMA expression and decreased mRNAs of several EMT markers. CONCLUSION: Asperuloside might prevent CAC through inhibiting EMT development via regulation of VDR/Smad3 pathway.


Assuntos
Neoplasias Associadas a Colite , Transição Epitelial-Mesenquimal , Animais , Monoterpenos Ciclopentânicos , Glucosídeos , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Piranos , RNA Mensageiro , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Front Pharmacol ; 12: 714065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650431

RESUMO

With the increasing incidence of ulcerative colitis (UC) in China, Chinese medicinal herbs or relatively active compounds are widely applied in treating UC. These medicines may be combined with other therapeutic agents such as vitamin D3. Nevertheless, the efficacy of these combinations for UC is unclear. Geniposide is an active component in many Chinese herbal medicines. It could ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. This study was designed to determine the efficacy and mechanism of the single use and combination of geniposide and vitamin D3 on a mouse model of acute colitis. Data showed that a single administration of geniposide (2 mg/kg) or vitamin D3 (4 IU/day) could significantly improve the symptoms of UC and relieve colon damage. Geniposide and vitamin D could significantly decrease the levels of TNF-α and IL-6 in serum and colon, and increase the level of IL-10 in the colon. However, the combined treatment of geniposide (2 mg/kg) and vitamin D3 (4 IU/day) exerted less beneficial effects on UC in mice, indicating by less improvement of UC symptoms, colon damage, and inflammatory infiltration. The combination only downregulated the level of TNF-α in serum and IL-6 in the colon. Our data further demonstrated that geniposide could inhibit the activation of p38 MAPK and then restrict the vitamin D receptor signaling stimulated by vitamin D3. These results implied that the combination of geniposide and vitamin D3 might not be an ideal combined treatment for acute colitis, and the combination of vitamin D supplementary and geniposide (or herbal medicines rich in geniposide) need more evaluation before being applied to treat UC in clinic.

12.
Chem Biol Interact ; 347: 109615, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34363819

RESUMO

It has been reported that Dendrobium officinale polysaccharides (DOPS) could alleviate colitis in animal model and suppress the activation of NLRP3 inflammasome and ß-arrestin1 in vitro. However, it remains unclear whether DOPS has effect on protecting against colitis-induced pulmonary injury. The purpose of this study was to explore the protective effect and mechanism of DOPS on colitis-induced lung injury. A dextran sodium sulfate (DSS)-induced mice colitis model and lipopolysaccharide (LPS)-stimulated BEAS-2B cells model were applied in this study. The results showed that DOPS treatment restored histopathological changes, reduced inflammatory cells infiltration, pro-inflammatory cytokines levels, reactive oxygen species (ROS) formation and MDA generation, and increased anti-oxidative enzymes activities including SOD and GSH-Px in colitis mice. Further investigation showed that DOPS significantly inhibited the protein expression of TLR4, and apparently up-regulated proteins expressions of nuclear-Nrf2, HO-1 and NQO-1 in lung tissues of colitis mice and in BEAS-2B cells. These results indicated that DOPS significantly inhibited inflammation and oxidative stress to alleviate colitis-induced secondary lung injury, and its mechanisms are closely related to the inhibition of TLR4 signaling pathway and the activation of Nrf2 signaling pathway. DOPS may be a promising drug for alleviating colitis-induced lung injury.


Assuntos
Colite/complicações , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Linhagem Celular , Dendrobium/química , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
13.
J Agric Food Chem ; 69(31): 8671-8683, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342231

RESUMO

We aimed to investigate whether phloridzin could alleviate nonalcoholic fatty liver disease (NAFLD) in mice, which was induced by feeding a high-fat diet (HFD). We initially analyzed the effect of phloridzin on alleviating HFD-induced NAFLD in C57BL/6J mice and oleic acid (OA)-stimulated human normal liver L-02 cells (L02). Then, we investigated the mechanism of phloridzin on the mTORC1/sterol-regulatory element-binding protein-1c (SREBP-1c) signaling pathway by siRNA analysis, qRT-PCR, flow cytometry, and western blot analysis in vivo and in vitro. The results revealed that phloridzin significantly inhibited the increase in body weight, alleviated abnormal lipid metabolism, and decreased lipid biosynthesis and insulin resistance. Moreover, phloridzin augmented the number of CD8+CD122+PD-1+ Tregs and CD4+FoxP3+ Tregs in HFD-fed C57BL/6J mice and HFD-fed aP2-SREBF1c mice and downregulated the mTORC1/SREBP-1c signaling pathway-related protein expressions in vivo and in vitro. Furthermore, phloridzin reduced the expression of SREBP-1c in SREBP-1c-RNAi-lentivirus-transfected L02 cells and reversed the SREBP-1c expression in HFD-fed aP2-SREBF1c transgenic mice. Phloridzin ameliorates lipid accumulation and insulin resistance via inhibiting the mTORC1/SREBP-1c pathways. These results indicated that phloridzin may actively ameliorate NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Florizina , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
14.
J Ethnopharmacol ; 279: 114394, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34245834

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pigeonpea (Cajanus cajan (L.) Millsp) leaves (PL) are widely used for treating avascular necrosis of the femoral head. PL has an ideal effect on bone angiogenesis in patients with hormone-induced avascular necrosis of the femoral head and could promote the repair of blood vessels in the necrotic femoral head. Angiogenesis is beneficial to the treatment of myocardial ischemia. PL can be used to treat ischemic heart disease; however, no studies have examined whether it could protect the myocardium against ischemia injury via promoting angiogenesis. AIM: The present study aimed to investigate whether PL could encourage angiogenesis on hypoxic human umbilical vein endothelial cells (HUVECs) and whether estrogen receptor (ER-α), protein kinase B (Akt), and vascular endothelial growth factor (VEGF) (the ischemia injury salvage kinase pathway, phosphoinositide-3 kinase (PI3K)) are involved in this effect. METHODS: A hypoxic HUVEC model was established by culture in the hypoxia incubator. The proliferation ability of HUVECs was determined by the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method, the migration rate of HUVECs was inspected by the Transwell method, the tube formation was evaluated by the Matrigel method, and the expression of PI3K, phosphorylated Akt (p-Akt), and VEGF was detected by Western blotting. RESULTS: The proliferation, migration, and tube formation were promoted by the PL extract on hypoxic HUVECs, and the hypoxia-induced downstream signaling was counteracted, leading to increased expression of PI3K, p-Akt, and VEGF in HUVECs. CONCLUSIONS: The current findings showed that the PL extracts encourage angiogenesis. In addition, the above effects could be mediated via ER-α and PI3K/Akt/VEGF pathways.


Assuntos
Cajanus/química , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Movimento Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxigênio , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Front Pharmacol ; 12: 632602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967768

RESUMO

Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) with a complex aetiology that commonly recurs. Most drugs for UC treatment interfere with metabolism and immune responses, often causing some serious adverse reactions. Therefore, the development of alternative treatments, including nutritional supplements and probiotics, have been one of the main areas of current research due to fewer side effect. As both a Chinese medicine and a food, edible bird's nest (EBN) has high nutritional value. Modern pharmacological studies have shown that it has anti-inflammatory, immunoregulatory, antiviral and neuroprotective effects. In this study, UC was induced with dextran sulfate sodium (DSS) to investigate the protective effect of EBN on colitis mice and the related mechanism. The body weight, faecal morphology and faecal occult blood results of mice were recorded every day from the beginning of the modelling period. After the end of the experiment, the length of the colon was measured, and the colon was collected for histopathological detection, inflammatory factor detection and immunohistochemical detection. Mouse spleens were dissected for flow cytometry. The results showed that in mice with colitis, EBN improved symptoms of colitis, reduced colonic injury, and inhibited the increases in the levels of the pro-inflammatory cytokines IL-1ß and TNF-α. The T helper 17 (Th17)/regulatory T (Treg) cell balance was restored by decreasing the expression of IL-17A and IL-6 in intestinal tissues, increasing the expression of TGF-ß, and decreasing the number of Th17 cells in each EBN dose group. These findings suggest that EBN has a protective effect on DSS-mediated colitis in mice, mainly by restoring the Th17/Treg cell balance.

16.
Chem Biol Interact ; 344: 109512, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974900

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBDs), which mainly include Crohn's disease (CD) and ulcerative colitis (UC), are chronic idiopathic inflammatory disease of the gastrointestinal tract for which effective pharmacological treatments are lacking or options are very limited. PURPOSE: Here, we aim to investigate the therapeutic effects of an iridoid glycoside, asperuloside (ASP) on mice experimental chronic colitis induced by dextran sulfate sodium (DSS) and further explore underlying mechanisms in vitro and in vivo. METHODS: LPS-treated RAW 264.7 cells showed inflammation and were assessed for various physiological, morphological and biochemical parameters in the absence or presence of ASP. Chronic colitis was induced by 2% DSS in mice, which were used as an animal model to explore the pharmacodynamics of ASP. We detected p65 and Nrf2 pathway proteins via Western blot and RT-PCR analysis, assessed the cytokines TNF-α and IL-6 via ELISA, tested p65 and Nrf2 nuclear translocation via fluorescence. In addition, the docking affinity of ASP and p65 or Nrf2 proteins in the MOE 2015 software. RESULTS: We found that ASP attenuated weight loss, disease activity index (DAI) and colonic pathological damage in colitis mice and restored the expressions of inflammatory cytokines in the colon. In addition, ASP restored antioxidant capacity in DSS-induced chronic colitis mice and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, ASP suppressed oxidative stress through increasing Nrf2, HO-1 and NQO-1 proteins expressions, and down-regulated nuclear levels of p65 to inhibit DSS-induced colonic oxidative stress and inflammation. Validation of the molecular docking results also indicated that ASP interacts with Nrf2 or p65 proteins. In summary, ASP improved DSS-induced chronic colitis by alleviating inflammation and oxidative stress, activating Nrf2/HO-1 signaling and limiting NF-κB signaling pathway, which may be an effective candidate for the treatment of IBD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/tratamento farmacológico , Monoterpenos Ciclopentânicos/uso terapêutico , Glucosídeos/uso terapêutico , Piranos/uso terapêutico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Colite/induzido quimicamente , Monoterpenos Ciclopentânicos/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Citocinas/metabolismo , Sulfato de Dextrana , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Piranos/metabolismo , Piranos/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
17.
Int J Biol Macromol ; 180: 633-642, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744251

RESUMO

The purpose of this paper was to explore the therapeutic effect and underlying mechanism of Tremella fuciformis polysaccharides (TFP) on ulcerative colitis (UC) based on dextran sodium sulfate (DSS)-induced mice UC model and lipopolysaccharide (LPS)-stimulated Caco-2 cells model. The results firstly indicated that TFP can significantly alleviate the symptoms and signs of the DSS-induced mice UC model, which manifests as improvement of body weight loss, increase of colon length, decrease of colon thickness and reduction of intestinal permeability. Then, results from histopathological and electron microscope analysis further implied that TFP could dramatically reduce inflammatory cells infiltration and restore intestinal epithelial barrier integrity. In addition, the experiments of LPS-stimulated Caco-2 cells model in vitro also further confirmed that TFP could markedly inhibit the expressions of pro-inflammatory cytokines and increase related genes or proteins expressions of intestinal barrier and mucus barrier. Taken together, these data suggested that TFP has a significant therapeutic effect on DSS-induced UC model, and its mechanisms are closely linked to the inhibition of inflammation and the restoration of intestinal barrier and mucus barrier function. These beneficial effects may make TFP a promising drug to be used in alleviating UC.


Assuntos
Basidiomycota/química , Colite Ulcerativa/prevenção & controle , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colo/efeitos dos fármacos , Colo/patologia , Colo/ultraestrutura , Sulfato de Dextrana , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Polissacarídeos/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Phytomedicine ; 83: 153489, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33571919

RESUMO

BACKGROUND: Patients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice. PURPOSE: We aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism. METHODS: The mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1ß, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice. RESULTS: Our results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice. CONCLUSION: Vitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .


Assuntos
Apigenina/farmacologia , Colite/patologia , Neoplasias Colorretais/prevenção & controle , Macrófagos/efeitos dos fármacos , Animais , Anticarcinógenos/farmacologia , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Colite/induzido quimicamente , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
20.
J Pharm Pharmacol ; 72(12): 1946-1955, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803752

RESUMO

OBJECTIVES: To explore the effect of recombinant LZ-8 (rLZ-8) on streptozocin (STZ)-induced diabetic rats and further illustrate its underlying mechanism. METHODS: Rats were intraperitoneally injected with single-dose STZ 50 mg/kg for induction of type 1 diabetes (T1D), and then, the diabetic rats were treated with rLZ-8 for 3 months. The clinical symptoms, fasting blood glucose, insulin, cytokines, histopathology, flow cytometry and immunofluorescence were used to evaluate the therapeutic effect and underlying mechanism of rLZ-8 on alleviating diabetes mellitus (DM). KEY FINDINGS: Treatment with rLZ-8 obviously alleviated the clinical symptoms of T1D and dose-dependently reduced the levels of blood glucose, blood lipid and haemoglobin A1c (HbA1c) in diabetic rat model. Meanwhile, rLZ-8 markedly increased insulin secretion and protected against STZ-induced pancreatic tissue injury. Additionally, rLZ-8 dramatically inhibited the levels of TNF-α and IL-1ß, and obviously increased the level of IL-10 in serum and pancreas. Further investigation indicated that rLZ-8 treatment significantly increased the number of regulatory T cells (Tregs) and up-regulated the expression of Foxp3 to restore balance between anti-inflammatory and inflammatory cytokines. CONCLUSIONS: These data suggest that rLZ-8 can antagonize STZ-induced T1D, and its mechanism may be related to inhibit inflammation and enhance Tregs generation.


Assuntos
Anti-Inflamatórios/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteínas Fúngicas/farmacologia , Controle Glicêmico , Hipoglicemiantes/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Citocinas/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/imunologia , Mediadores da Inflamação/sangue , Masculino , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Estreptozocina , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...