Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570280

RESUMO

Phosphatidic acid (PA) as a universal second messenger is transiently and rapidly produced upon immune activation in plants. A recent study by Kong et al. elucidated a mechanism for maintaining PA homeostasis via two uncoupled phosphorylation events of DIACYLGLYCEROL KINASE 5 (DGK5) at different phosphorylation sites by two distinct kinases.

2.
Mol Plant Pathol ; 25(1): e13415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279853

RESUMO

Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis. The expression of WRR4B was upregulated by O. heveae inoculation, and WRR4B positively regulated the expression of genes involved in SA biosynthesis, such as EDS1, PAD4, ICS1 (ISOCHORISMATE SYNTHASE 1), SARD1 (SYSTEMIC-ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN-BINDING PROTEIN 60 G). Furthermore, WRR4B triggered self-amplification, suggesting that WRR4B mediated plant resistance through taking part in the SA-based positive feedback loop. In addition, WRR4B induced an EDS1-dependent hypersensitive response in Nicotiana benthamiana and contributed to disease resistance against three other PM species: Podosphaera xanthii, Erysiphe quercicola and Erysiphe neolycopersici, indicating that WRR4B is a broad-spectrum disease resistance gene against PMs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Erysiphe/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Doenças das Plantas/genética , Ácido Salicílico/metabolismo
3.
Mol Plant ; 17(1): 26-49, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041402

RESUMO

The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.


Assuntos
Estômatos de Plantas , Plantas , Estômatos de Plantas/fisiologia
4.
Trends Plant Sci ; 29(3): 278-282, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38016865

RESUMO

Resistance (R) genes in the Triticeae tribe include not only genes encoding the canonical intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) but also genes encoding kinase fusion proteins (KFPs). Exploring these unconventional KFPs may expand the scope of effector-triggered immunity (ETI) and will have significant implications for crop improvement.


Assuntos
Proteínas NLR , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas
5.
Trends Microbiol ; 32(1): 8-9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953153

RESUMO

Bacterial pathogens deliver effectors into host cells mostly to manipulate signaling and metabolic molecules, thereby subverting host immunity. A recent study by Nomura et al. demonstrates that certain effectors create membrane channels in host cells, enabling bacteria to access water and solutes for multiplication.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Doenças das Plantas/microbiologia
6.
Plant Physiol ; 193(4): 2788-2805, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37725401

RESUMO

High temperature induces stomatal opening; however, uncontrolled stomatal opening is dangerous for plants in response to high temperature. We identified a high-temperature sensitive (hts) mutant from the ethyl methane sulfonate (EMS)-induced maize (Zea mays) mutant library that is linked to a single base change in MITOGEN-ACTIVATED PROTEIN KINASE 20 (ZmMPK20). Our data demonstrated that hts mutants exhibit substantially increased stomatal opening and water loss rate, as well as decreased thermotolerance, compared to wild-type plants under high temperature. ZmMPK20-knockout mutants showed similar phenotypes as hts mutants. Overexpression of ZmMPK20 decreased stomatal apertures, water loss rate, and enhanced plant thermotolerance. Additional experiments showed that ZmMPK20 interacts with MAP KINASE KINASE 9 (ZmMKK9) and E3 ubiquitin ligase RPM1 INTERACTING PROTEIN 2 (ZmRIN2), a maize homolog of Arabidopsis (Arabidopsis thaliana) RIN2. ZmMPK20 prevented ZmRIN2 degradation by inhibiting ZmRIN2 self-ubiquitination. ZmMKK9 phosphorylated ZmMPK20 and enhanced the inhibitory effect of ZmMPK20 on ZmRIN2 degradation. Moreover, we employed virus-induced gene silencing (VIGS) to silence ZmMKK9 and ZmRIN2 in maize and heterologously overexpressed ZmMKK9 or ZmRIN2 in Arabidopsis. Our findings demonstrated that ZmMKK9 and ZmRIN2 play negative regulatory roles in high-temperature-induced stomatal opening. Accordingly, we propose that the ZmMKK9-ZmMPK20-ZmRIN2 cascade negatively regulates high-temperature-induced stomatal opening and balances water loss and leaf temperature, thus enhancing plant thermotolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Temperatura , Estômatos de Plantas/fisiologia , Água/metabolismo
7.
Trends Plant Sci ; 27(9): 831-833, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660342

RESUMO

Plant cell-wall perturbation upon environmental stress triggers adaptive cellular responses mediated by plasma membrane-resident sensors. We discuss a recent study by Bacete et al. showing that THESEUS1 (THE1) regulates plant cell adaptive responses to cell-wall disruption and update the working model for THE1 activation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Isomerismo , Peptídeos , Percepção
8.
Nature ; 605(7909): 332-339, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508659

RESUMO

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Estômatos de Plantas , Plantas , Água , Proteínas de Arabidopsis , Desidratação , Dessecação
9.
Plant Signal Behav ; 17(1): 2034270, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164659

RESUMO

Plant immunity is initiated by cell surface-localized receptors upon perception of pathogen-derived microbe or pathogen-associated molecular patterns (MAMPs/PAMPs), damage/danger-associated molecular patterns (DAMPs), and phytocytokines. Different patterns activate highly overlapping immune signaling at the early stage but divergent physiological responses at the late stage. Here, we indicate that plant elicitor peptide 1 (Pep1), a well-known DAMP, induces lignin and callose depositions, two types of late immune responses for strengthening the plant cell wall. Pep1-induced lignin and callose depositions in Arabidopsis root rely on early signaling components for Pep1 perception and signaling propagation. The phytohormone jasmonic acid and ethylene differently regulate the Pep1-regulated cell wall consolidation. Pep1 application in root also triggers a systemic immune signaling in shoot, and reactive oxygen species (ROS) is essential for the signaling communication between root and shoot. Collectively, the study reveals that Pep1 strengthens cell walls in root and triggers a systemic immune signaling from root to shoot.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alarminas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Peptídeos/metabolismo , Imunidade Vegetal , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo
10.
Stress Biol ; 1(1): 8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806087

RESUMO

Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features. Here, we highlight the current understanding of phytocytokine production, perception and functions in plant immunity, and discuss how plants and pathogens manipulate phytocytokine signaling for their own benefits during the plant-pathogen warfare.

11.
Nat Commun ; 12(1): 5494, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535661

RESUMO

Sessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that the Arabidopsis receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) from Brassicaceae plants as well as proteins present in fungal Fusarium spp. and bacterial Comamonadaceae, and elicits various immune responses. SCOOP signature peptides trigger immune responses and altered root development in a MIK2-dependent manner with a sub-nanomolar sensitivity. SCOOP12 directly binds to the extracellular leucine-rich repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identifies a plant receptor that bears a dual role in sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Citocinas/metabolismo , Fusarium/fisiologia , Imunidade Vegetal , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Domínios Proteicos , Proteínas Quinases/química , Receptores de Superfície Celular/química
12.
Biochem J ; 478(10): 1847-1852, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34003253

RESUMO

Plants encode a large number of proteases in activating intracellular signaling through proteolytic cleavages of various protein substrates. One type of the substrates is proligands, including peptide hormones, which are perceived by cell surface-resident receptors. The peptide hormones are usually first synthesized as propeptides, and then cleaved by specific proteases for activation. Accumulating evidence indicates that the protease-mediated cleavage of proligands can be triggered by environmental stresses and subsequently activates plant stress signaling. In this perspective, we highlight several recent publications and provide an update about stress-induced cleavage of propeptides and receptor-associated components by proteases in the activation of cell surface-resident receptor signaling in plants. We also discuss some questions and future challenges in the research of protease functions in plant stress response.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Estresse Fisiológico , Proteólise
13.
Front Plant Sci ; 11: 548034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329622

RESUMO

Guard cells shrink in response to drought stress and abscisic acid (ABA) signaling, thereby reducing stomatal aperture. Hydrogen peroxide (H2O2) is an important signaling molecule acting to induce stomatal closure. As yet, the molecular basis of control over the level of H2O2 in the guard cells remains largely unknown. Here, the leucine-rich repeat (LRR)-receptor-like kinase (RLK) protein HSL3 has been shown to have the ability to negatively regulate stomatal closure by modulating the level of H2O2 in the guard cells. HSL3 was markedly up-regulated by treating plants with either ABA or H2O2, as well as by dehydration. In the loss-of-function hsl3 mutant, both stomatal closure and the activation of anion currents proved to be hypersensitive to ABA treatment, and the mutant was more tolerant than the wild type to moisture deficit; the overexpression of HSL3 had the opposite effect. In the hsl3 mutant, the transcription of NADPH oxidase gene RbohF involved in H2O2 production showed marked up-regulation, as well as the level of catalase activity was weakly inducible by ABA, allowing H2O2 to accumulate in the guard cells. HSL3 was concluded to participate in the regulation of the response to moisture deficit through ABA-induced stomatal closure triggered by the accumulation of H2O2 in the guard cells.

14.
Plant Signal Behav ; 14(11): 1666657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31526105

RESUMO

Various pathogenic species are capable of penetrating plant leaves through stomata on the leaf surface for propagation by absorbing nutrients in plant interiors. Plants have evolved abilities to close stomata to restrict pathogen infections. The model plant Arabidopsis (Arabidopsis thaliana) closes stomata when FLAGELLIN SENSING2 (FLS2), a receptor protein localized in the plasma membrane (PM) of stomatal guard cells, detects flagellin, a pathogen-associated molecular pattern (PAMP) derived from the bacterial pathogen Pseudomonas syringae. It currently remains largely unknown how flagellin-FLS2 signaling initiates stomatal closure. Our previous studies showed that PAMP-INDUCED PEPTIDE1 (PIP1), an Arabidopsis endogenous peptide, activates immune responses through a PM-localized receptor, RECEPTOR-LIKE KINASE7 (RLK7). Here, we demonstrate that PIP1-RLK7 act downstream of FLS2 to activate stomatal immunity against the bacterial strain Pseudomonas syringe pv. tomato (Pst) DC3118. PIP1 promotes the expression of genes involved in salicylic acid (SA) biosynthesis. SA contributes to the expression of PIP1 preligand prePIP1 and the PIP1-induced stomatal closure. In contrast, methl jasmonate (MJ) and a pathogen-derived jasmonate mimic coronatine (COR) performs an opposite function of SA. SA also promotes the PIP1-induced production of reactive oxygen species (ROS) which is required for PIP1-induced stomatal closure. Overall, PIP1 and SA may form a positive feedback loop to regulate ROS-mediated stomatal immunity in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oxilipinas/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
Trends Plant Sci ; 24(9): 787-790, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31272898

RESUMO

Plant elicitor peptide 1 (Pep1) is a versatile immune modulator that is involved in plant defense against herbivores and pathogens. A recent study (Hander et al., Science, 2019) has uncovered that Arabidopsis thaliana Pep1 is released from the C-terminus of the tonoplast-resident precursor protein, PROPEP1, by Ca2+-activated metacaspases upon cell membrane rupture in damaged tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio , Herbivoria , Peptídeos
16.
Front Plant Sci ; 10: 646, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191574

RESUMO

As a universal process in multicellular organisms, including animals and plants, cells usually emit danger signals when suffering from attacks of microbes and herbivores, or physical damage. These signals, termed as damage-associated molecular patterns (DAMPs), mainly include cell wall or extracellular protein fragments, peptides, nucleotides, and amino acids. Once exposed on cell surfaces, DAMPs are detected by plasma membrane-localized receptors of surrounding cells to regulate immune responses against the invading organisms and promote damage repair. DAMPs may also act as long-distance mobile signals to mediate systemic wounding responses. Generation, release, and perception of DAMPs, and signaling events downstream of DAMP perception are all rigorously modulated by plants. These processes integrate together to determine intricate mechanisms of DAMP-triggered immunity in plants. In this review, we present an extensive overview on our current understanding of DAMPs in plant immune system.

17.
Biochem J ; 475(15): 2491-2509, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115747

RESUMO

Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Peptídeo Hidrolases/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteólise , Transdução de Sinais , Plantas/microbiologia
18.
Plant J ; 89(2): 250-263, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27618493

RESUMO

Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell-wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)-derived peptide and its receptors, HAESA (HAE) and HAESA-LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell-wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA-like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss-of-function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6-HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6-HAE/HSL2-ADPG2 signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Pectinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Poligalacturonase/genética , Poligalacturonase/metabolismo , Proteínas Serina-Treonina Quinases/genética
19.
Mol Plant Pathol ; 17(9): 1331-1343, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26724785

RESUMO

Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector-triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA-independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2-2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.


Assuntos
Arabidopsis/microbiologia , Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Arabidopsis/metabolismo , Morte Celular , Resistência à Doença , Ecótipo , Hifas/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Ácido Salicílico/metabolismo
20.
PLoS Pathog ; 10(9): e1004331, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188390

RESUMO

In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Imunidade Inata/imunologia , Fragmentos de Peptídeos/imunologia , Imunidade Vegetal/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Arabidopsis/genética , Western Blotting , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Reconhecimento de Padrão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...