Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719812

RESUMO

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Assuntos
Acetilglucosamina , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Rad51 Recombinase , Reparo de DNA por Recombinação , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Acetilglucosamina/metabolismo , Rad51 Recombinase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fosforilação , Replicação do DNA , Ubiquitinação , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , DNA/metabolismo , Células HEK293 , Raios Ultravioleta , Ligação Proteica , Glicosilação , Síntese de DNA Translesão
2.
Nucleic Acids Res ; 51(10): 4760-4773, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36912084

RESUMO

Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.


Assuntos
Acetiltransferases , Cromátides , Proteínas Cromossômicas não Histona , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Humanos , Linhagem Celular , Leveduras , Proteínas Cromossômicas não Histona/metabolismo , Coesinas
3.
Enzyme Microb Technol ; 164: 110192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608409

RESUMO

Papain, as a classical cysteine protease, has been widely used in the food, pharmaceutical, chemical, and cosmetic fields. However, there are few information about the peroxidase-like activity of papain catalyzed substrate to produce fluorescence. In this study, we found that papain can catalyze H2O2 to convert o-phenylenediamine (OPD), and generate fluorescence emission at 550 nm under 430 nm excitation. Based on this foundation, we report a papain/OPD/H2O2 system for fluorescence detection of uric acid. The method exhibits a wide linear range of 10-1000 µM with a limit-of-detection of 4.6 µM, and has been successfully used to detect uric acid in human serum. This study paves the way for the application of papain as catalyst for fluorescence detection of different target biomolecules, such as cholesterol, glucose, lactate, for which H2O2 is a product of oxidoreductase enzymes.


Assuntos
Medições Luminescentes , Papaína , Ácido Úrico , Humanos , Catálise , Corantes , Peróxido de Hidrogênio/química , Limite de Detecção , Papaína/química , Peroxidase/química , Ácido Úrico/sangue , Fluorescência
4.
Crit Rev Biochem Mol Biol ; 57(3): 333-350, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112600

RESUMO

Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas Nucleares , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Reparo do DNA , Mamíferos/metabolismo , Proteínas Nucleares/genética , Coesinas
5.
EMBO J ; 41(4): e108290, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35028974

RESUMO

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Assuntos
Replicação do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Glucose/genética , Glucose/metabolismo , Glicólise/fisiologia , Hidroxiureia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NADP/metabolismo , Via de Pentose Fosfato , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Front Cell Dev Biol ; 9: 735678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660592

RESUMO

Iron-sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.

7.
J Biol Chem ; 295(22): 7554-7565, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32312753

RESUMO

Cohesin is a DNA-associated protein complex that forms a tripartite ring controlling sister chromatid cohesion, chromosome segregation and organization, DNA replication, and gene expression. Sister chromatid cohesion is established by the protein acetyltransferase Eco1, which acetylates two conserved lysine residues on the cohesin subunit Smc3 and thereby ensures correct chromatid separation in yeast (Saccharomyces cerevisiae) and other eukaryotes. However, the consequence of Eco1-catalyzed cohesin acetylation is unknown, and the exact nature of the cohesive state of chromatids remains controversial. Here, we show that self-interactions of the cohesin subunits Scc1/Rad21 and Scc3 occur in a DNA replication-coupled manner in both yeast and human cells. Using cross-linking MS-based and in vivo disulfide cross-linking analyses of purified cohesin, we show that a subpopulation of cohesin may exist as dimers. Importantly, upon temperature-sensitive and auxin-induced degron-mediated Eco1 depletion, the cohesin-cohesin interactions became significantly compromised, whereas deleting either the deacetylase Hos1 or the Eco1 antagonist Wpl1/Rad61 increased cohesin dimer levels by ∼20%. These results indicate that cohesin dimerizes in the S phase and monomerizes in mitosis, processes that are controlled by Eco1, Wpl1, and Hos1 in the sister chromatid cohesion-dissolution cycle. These findings suggest that cohesin dimerization is controlled by the cohesion cycle and support the notion that a double-ring cohesin model operates in sister chromatid cohesion.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
8.
PLoS Genet ; 15(8): e1008136, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381575

RESUMO

The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Quinase 3 da Glicogênio Sintase/genética , Hidroxiureia/toxicidade , Nucleotídeos/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochem Biophys Res Commun ; 506(2): 355-360, 2018 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-30093111

RESUMO

Actin filament formation plays a pivotal role in the development, regeneration and modulation of the morphologies and physiological functions of subcellular compartments and entire cells. All of these processes require tight temporal and spatial control of F-actin assembly. Recent work has shed new light on the control of actin filament formation by Ca2+ as very fast, transient messenger allowing for defined responses to signal intensities spanning several orders of magnitude. Recent discoveries highlight that a small but rapidly growing set of actin nucleators and related proteins, i.e. factors that have the power to promote the formation of new actin filaments in cells, are tightly controlled by the Ca2+ sensor protein CaM. We here review the cellular functions and the molecular mechanisms that couple Ca2+ signaling to the cytoskeletal functions of these factors. This set of proteins currently includes one actin nucleator of the formin family (INF2), the WH2 domain-based actin nucleator Cobl and its ancestor protein Cobl-like as well as fesselin/synaptopodin-2/myopodin and myelin basic protein (MBP). Considering the mechanistic principles of Ca2+ control of actin filament formation unveiled thus far and the diverse cell biological processes involving Ca2+ signaling it is obvious that our understanding of the cell biological crosstalk of Ca2+ transients with the in part highly specialized actin cytoskeletal structures observed in different cell types is only at its infancy.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas dos Microfilamentos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/genética , Animais , Sinalização do Cálcio , Calmodulina/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Forminas , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
10.
Dev Cell ; 45(2): 262-275.e8, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689199

RESUMO

The complex architecture of neuronal networks in the brain requires tight control of the actin cytoskeleton. The actin nucleator Cobl is critical for neuronal morphogenesis. Here we reveal that Cobl is controlled by arginine methylation. Coprecipitations, coimmunoprecipitations, cellular reconstitutions, and in vitro reconstitutions demonstrated that Cobl associates with the protein arginine methyltransferase PRMT2 in a Src Homology 3 (SH3) domain-dependent manner and that this promotes methylation of Cobl's actin nucleating C-terminal domain. Consistently, PRMT2 phenocopied Cobl functions in both gain- and loss-of-function studies. Both PRMT2- and Cobl-promoted dendritogenesis relied on methylation. PRMT2 effects require both its catalytic domain and SH3 domain. Cobl-mediated dendritic arborization required PRMT2, complex formation with PRMT2, and PRMT2's catalytic activity. Mechanistic studies reveal that Cobl methylation is key for Cobl actin binding. Therefore, arginine methylation is a regulatory mechanism reaching beyond controlling nuclear processes. It also controls a major, cytosolic, cytoskeletal component shaping neuronal cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Arginina/metabolismo , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto , Feminino , Hipocampo/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Neurônios/citologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Proteínas/genética , Ratos , Ratos Wistar , Técnicas do Sistema de Duplo-Híbrido
11.
Elife ; 62017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29202928

RESUMO

Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.


Assuntos
Cavéolas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caveolina 3/sangue , Membrana Celular/metabolismo , Fenômenos Químicos , Proteínas do Citoesqueleto , Técnicas de Inativação de Genes , Proteínas de Membrana/sangue , Camundongos , Camundongos Knockout , Células Musculares/fisiologia , Células Musculares/ultraestrutura , Fosfoproteínas/deficiência , Plasma/química , Proteínas de Ligação a RNA/sangue
12.
Elife ; 52016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27919320

RESUMO

Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Fenômenos Fisiológicos Celulares , Citoesqueleto de Actina/metabolismo , Adaptação Fisiológica , Animais , Linhagem Celular , Humanos
13.
PLoS One ; 11(10): e0165148, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27783656

RESUMO

Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles.


Assuntos
Luz , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Células HeLa , Humanos , Dinâmica não Linear
14.
PLoS Biol ; 13(9): e1002233, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26334624

RESUMO

Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer-binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl's functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl's actin binding properties and furthermore promotes Cobl's previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl's cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells-a key process in neuronal network formation.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal , Actinas/metabolismo , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Proteínas do Citoesqueleto , Células HEK293 , Humanos , Masculino , Camundongos , Ratos
15.
Nucleic Acids Res ; 43(12): 5936-47, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999347

RESUMO

Proper DNA damage response is essential for the maintenance of genome integrity. The E3 ligase RNF168 deficiency fully prevents both the initial recruitment and retention of 53BP1 at sites of DNA damage. In response to DNA damage, RNF168-dependent recruitment of the lysine-specific demethylase LSD1 to the site of DNA damage promotes local H3K4me2 demethylation and ubiquitination of H2A/H2AX, facilitating 53BP1 recruitment to sites of DNA damage. Alternatively, RNF168-mediated K63-linked ubiquitylation of 53BP1 is required for the initial recruitment of 53BP1 to sites of DNA damage and for its function in repair. We demonstrated here that phosphorylation and dephosphorylation of LSD1 at S131 and S137 was mediated by casein kinase 2 (CK2) and wild-type p53-induced phosphatase 1 (WIP1), respectively. LSD1, RNF168 and 53BP1 interacted with each other directly. CK2-mediated phosphorylation of LSD1 exhibited no impact on its interaction with 53BP1, but promoted its interaction with RNF168 and RNF168-dependent 53BP1 ubiquitination and subsequent recruitment to the DNA damage sites. Furthermore, overexpression of phosphorylation-defective mutants failed to restore LSD1 depletion-induced cellular sensitivity to DNA damage. Taken together, our results suggest that LSD1 phosphorylation modulated by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment directly in response to DNA damage and cellular sensitivity to DNA damaging agents.


Assuntos
Caseína Quinase II/metabolismo , Dano ao DNA , Histona Desmetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Fosforilação , Proteína Fosfatase 2C , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
16.
Sci Rep ; 5: 8360, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666058

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder caused by ATTCT expansion in the ATXN10 gene. Previous investigations have identified that depletion of Ataxin-10, the gene product, leads to cellular apoptosis and cytokinesis failure. Herein we identify the mitotic kinase Aurora B as an Ataxin-10 interacting partner. Aurora B interacts with and phosphorylates Ataxin-10 at S12, as evidenced by in vitro kinase and mass spectrometry analysis. Both endogenous and S12-phosphorylated Ataxin-10 localizes to the midbody during cytokinesis, and cytokinetic defects induced by inhibition of ATXN10 expression is not rescued by the S12A mutant. Inhibition of Aurora B or expression of the S12A mutant renders reduced interaction between Ataxin-10 and polo-like kinase 1 (Plk1), a kinase previously identified to regulate Ataxin-10 in cytokinesis. Taken together, we propose a model that Aurora B phosphorylates Ataxin-10 at S12 to promote the interaction between Ataxin-10 and Plk1 in cytokinesis. These findings identify an Aurora B-dependent mechanism that implicates Ataxin-10 in cytokinesis.


Assuntos
Ataxina-10/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Substituição de Aminoácidos , Ataxina-10/genética , Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
17.
Cell Cycle ; 10(17): 2946-58, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857149

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder, whose symptoms include cerebellar ataxia and epilepsy. The disease is caused by ATTCT expansion in the ATXN10 gene, which encodes the Ataxin-10 protein. Here we identified polo-like kinase 1 (Plk1) as one of Ataxin-10's binding partners. We show that epitope-tagged Ataxin-10 and Plk1 coimmunoprecipitate, and Plk1 phosphorylates Ataxin-10 at S77 and T82 in vitro. Knockdown of ATXN10 with siRNA in HeLa cells results in cytokinesis defects-multinucleation, which are rescued by wild-type Ataxin-10, but not the phosphor-deficient 2A mutant. Phosphorylation-specific antibodies towards pS77 detect specific signals at the midbody. Like the knockdown, overexpression of the 2A mutant generates multinucleated cells and the 2A mutant shows decreased interaction with the Plk1 polo-box domain. In addition, we found that Ataxin-10 is ubiquitinated, and is subject to proteasome-dependent degradation, which is delayed in the 2A mutant. We propose a model in which Plk1 phosphorylation of Ataxin-10 influences its degradation and cytokinesis, which may provide mechanistic insight to SCA10's pathogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ataxina-10 , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Células Gigantes/citologia , Células Gigantes/metabolismo , Células HeLa , Humanos , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estabilidade Proteica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Transfecção , Ubiquitinação , Quinase 1 Polo-Like
18.
Cell Cycle ; 10(9): 1411-9, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21451261

RESUMO

DNA double-strand breaks (DSBs) are among the most lethal lesions associated with genome stability which, when destabilized, predisposes organs to cancers. DSBs are primarily fixed either with little fidelity by non-homologous end joining (NHEJ) repair or with high fidelity by homology-directed repair (HDR). The phosphorylated form of H2AX on serine 139 (γ-H2AX) is a marker of DSBs. In this study, we explored if the protein phosphatase PP6 is involved in DSB repair by depletion of its expression in human cancer cell lines, and determined PP6 expression in human breast cancer tissues by immunohistochemistry staining. We found that bacterially-produced PP6c (the catalytic subunit of PP6)-containing heterotrimeric combinations exhibit phosphatase activity against γ-H2AX in the in vitro phosphatase assays. Depletion of PP6c or PP6R2 led to persistent high levels of γ-H2AX after DNA damage and a defective HDR. Chromatin immunoprecipitation assays demonstrated that PP6c was recruited to the region adjacent to the DSB sites. Expression of PP6c, PP6R2, and PP6R3 in human breast tumors was significantly lower than those in benign breast diseases. Taken together, our results suggest that γ-H2AX is a physiological substrate of PP6, and PP6 is required for HDR and its expression may harbor a protective role during the development of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Antineoplásicos Fitogênicos/toxicidade , Neoplasias da Mama/genética , Camptotecina/toxicidade , Ativação Enzimática/fisiologia , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HeLa , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Osteossarcoma , Fosforilação/fisiologia , RNA Interferente Pequeno/farmacologia , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...