Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 172: 107768, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709675

RESUMO

The global livestock system is one of the largest sources of ammonia emissions and there is an urgent need for ammonia mitigation. Here, we designed and constructed a novel strategy to abate ammonia emissions via livestock manure acidification based on a synthetic lactic acid bacteria community (LAB SynCom). The LAB SynCom possessed a wide carbon source spectrum and pH profile, high adaptability to the manure environment, and a high capability of generating lactic acid. The mitigation strategy was optimized based on the test and performance by adjusting the LAB SynCom inoculation ratio and the adding frequency of carbon source, which contributed to a total ammonia reduction efficiency of 95.5 %. Furthermore, 16S rDNA amplicon sequencing analysis revealed that the LAB SynCom treatment reshaped the manure microbial community structure. Importantly, 22 manure ureolytic microbial genera and urea hydrolysis were notably inhibited by the LAB SynCom treatment during the treatment process. These findings provide new insight into manure acidification that the conversion from ammonia to ammonium ions and the inhibition of ureolytic bacteria exerted a synergistic effect on ammonia mitigation. This work systematically developed a novel strategy to mitigate ammonia emissions from livestock waste, which is a crucial step forward from traditional manure acidification to novel and environmental-friendly acidification.


Assuntos
Amônia , Esterco , Animais , Amônia/análise , Gado , Bactérias , Carbono , Concentração de Íons de Hidrogênio
2.
FEBS Lett ; 593(10): 1113-1121, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953343

RESUMO

Large membrane proteins such as G protein-coupled receptors (GPCRs) are difficult for NMR study due to severe signal overlaps and unfavorable relaxation properties. We used a trimethylsilyl (TMS) group as a reporter group for 1 H NMR study of conformational changes in proteins, utilizing high-intensity 1 H NMR signals near 0 p.p.m. The ß2 -adrenergic receptor was labeled with TMS groups at two cysteines located at the cytoplasmic ends of helices VI and VII. Binding of various ligands led to changes in 1 H NMR signals, which manifested that helix VI is sensitive to G protein-specific activation, whereas helix VII is sensitive to ß-arrestin-specific activation. Thus, the TMS group is a useful reporter group in NMR for studying conformational changes in membrane proteins such as GPCRs.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Receptores Adrenérgicos beta 2/metabolismo , Humanos , Ligantes , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Compostos de Trimetilsilil/química
4.
J Biomol NMR ; 68(1): 1-6, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508109

RESUMO

The amino acid 4-fluoro-L-phenylalanine (4F-Phe) was introduced at the positions of Phe6 and Phe22 in the 29-residue polypeptide hormone glucagon by expressing glucagon in E. coli in the presence of an excess of 4F-Phe. Glucagon regulates blood glucose homeostasis by interaction with the glucagon receptor (GCGR), a class B GPCR. By referencing to the 4F-Phe chemical shifts at varying D2O concentrations, the solvent exposure of the two Phe sites along the glucagon sequence was determined, showing that 4F-Phe6 was fully solvent exposed and 4F-Phe22 was only partially exposed. The incorporation of fluorine atoms in polypeptide hormones paves the way for novel studies of their interactions with membrane-spanning receptors, specifically by differentiating between effects on the solvent accessibility, the line shapes, and the chemical shifts from interactions with lipids, detergents and proteins. Studies of interactions of GCGR with ligands in solution is at this point of keen interest, given that recent crystallographic studies revealed that an apparent small molecule antagonist actually binds as an allosteric effector at a distance of ~20 Å from the orthosteric ligand binding site (Jazayeri et al., in Nature 533:274-277, 2016).


Assuntos
Glucagon/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fenilalanina/metabolismo , Receptores de Glucagon/química , Solventes/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Flúor/análise , Glucagon/metabolismo , Humanos , Receptores de Glucagon/metabolismo , p-Fluorfenilalanina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...