Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 64, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438919

RESUMO

BACKGROUND: The function of diverse ruminal microbes is tightly linked to rumen development and host physiology. The system of ruminal microbes is an excellent model to clarify the fundamental ecological relationships among complex nutrient-microbiome-host interactions. Here, neonatal lambs are introduced to different dietary regimes to investigate the influences of early-life crosstalk between nutrients and microbiome on rumen development. RESULTS: We find starchy corn-soybean starter-fed lambs exhibit the thickest ruminal epithelia and fiber-rich alfalfa hay-fed lambs have the thickest rumen muscle. Metabolome and metagenome data reveal that indole-3-carboxaldehyde (3-IAld) and prostaglandin D2 (PGD2) are the top characteristic ruminal metabolites associated with ruminal epithelial and muscular development, which depend on the enhanced ruminal microbial synthesis potential of 3-IAld and PGD2. Moreover, microbial culture experiment first demonstrates that Bifidobacterium pseudolongum is able to convert tryptophan into 3-IAld and Candida albicans is a key producer for PGD2. Transcriptome sequencing of the ruminal epithelia and smooth muscle shows that ruminal epithelial and muscular development is accompanied by Wnt and Ca2+ signaling pathway activation. Primary cell cultures further confirm that 3-IAld promotes ruminal epithelial cell proliferation depending on AhR-wnt/ß-catenin signaling pathway and PGD2 accelerates ruminal smooth muscle cell proliferation via Ca2+ signaling pathway. Furthermore, we find that 3-IAld and PGD2 infusion promote ruminal epithelial and musculature development in lambs. CONCLUSIONS: This study demonstrates that early-life ruminal microbiome-derived 3-IAld and PGD2 are effective promoters of rumen development, which enhances our understanding of nutrient-microbiome-host interactions in early life.


Assuntos
Indóis , Microbiota , Prostaglandina D2 , Ovinos , Animais , Rúmen , Metagenoma
2.
Cell Metab ; 36(3): 466-483.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266651

RESUMO

The brain and gut are intricately connected and respond to various stimuli. Stress-induced brain-gut communication is implicated in the pathogenesis and relapse of gut disorders. The mechanism that relays psychological stress to the intestinal epithelium, resulting in maladaptation, remains poorly understood. Here, we describe a stress-responsive brain-to-gut metabolic axis that impairs intestinal stem cell (ISC) lineage commitment. Psychological stress-triggered sympathetic output enriches gut commensal Lactobacillus murinus, increasing the production of indole-3-acetate (IAA), which contributes to a transferrable loss of intestinal secretory cells. Bacterial IAA disrupts ISC mitochondrial bioenergetics and thereby prevents secretory lineage commitment in a cell-intrinsic manner. Oral α-ketoglutarate supplementation bolsters ISC differentiation and confers resilience to stress-triggered intestinal epithelial injury. We confirm that fecal IAA is higher in patients with mental distress and is correlated with gut dysfunction. These findings uncover a microbe-mediated brain-gut pathway that could be therapeutically targeted for stress-driven gut-brain comorbidities.


Assuntos
Microbioma Gastrointestinal , Humanos , Linhagem da Célula , Estresse Psicológico/microbiologia , Acetatos , Indóis/farmacologia
3.
Cell Host Microbe ; 32(2): 227-243.e6, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198925

RESUMO

Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Bacteroidetes , Encéfalo , Microbioma Gastrointestinal/fisiologia
4.
Chin J Nat Med ; 21(10): 745-758, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37879793

RESUMO

Depression is a mental disorder with high morbidity, disability and relapse rates. Ginkgo biloba extract (GBE), a traditional Chinese medicine, has a long history of clinical application in the treatment of cerebral and mental disorders, but the key mechanism remains incompletely understood. Here we showed that GEB exerted anti-depressant effect in mice through regulating gut microbial metabolism. GBE protected against unpredictable mild stress (UMS)-induced despair, anxiety-like and social avoidance behavior in mice without sufficient brain distribution. Fecal microbiome transplantation transmitted, while antibiotic cocktail abrogated the protective effect of GBE. Spatiotemporal bacterial profiling and metabolomics assay revealed a potential involvement of Parasutterella excrementihominis and the bile acid metabolite ursodeoxycholic acid (UDCA) in the effect of GBE. UDCA administration induced depression-like behavior in mice. Together, these findings suggest that GBE acts on gut microbiome-modulated bile acid metabolism to alleviate stress-induced depression.


Assuntos
Depressão , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Depressão/tratamento farmacológico , Extratos Vegetais , Ginkgo biloba
5.
Nat Commun ; 14(1): 6160, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789028

RESUMO

Chronic stress is a known risk factor for breast cancer, yet the underlying mechanisms are unclear. This study explores the potential involvement of microbial and metabolic signals in chronic stress-promoted breast cancer progression, revealing that reduced abundances of Blautia and its metabolite acetate may contribute to this process. Treatment with Blautia and acetate increases antitumor responses of CD8+ T cells and reverses stress-promoted breast cancer progression in female mice. Patients with depression exhibit lower abundances of Blautia and acetate, and breast cancer female patients with depression display lower abundances of acetate, decreased numbers of tumor-infiltrating CD8+ T cells, and an increased risk of metastasis. These results suggest that Blautia-derived acetate plays a crucial role in modulating the immune response to breast cancer, and its reduction may contribute to chronic stress-promoted cancer progression. Our findings advance the understanding of microbial and metabolic signals implicated in cancer in patients with depression and may provide therapeutic options for female patients with breast cancer and depression.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Camundongos , Animais , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos
6.
Phytomedicine ; 103: 154220, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35675748

RESUMO

BACKGROUND: Atherosclerosis (AS) is a key pathological factor in cardiovascular disease (CVD) and is characterized by high mortality and morbidity worldwide. Metabolic disorders, including pathoglycemia and dyslipidemia that lead to chronic inflammation, represent the prominent pathological characteristics of atherosclerotic CVD, Qing-Xin-Jie-Yu Granule (QXJYG) is a Chinese traditional decoction that has been clinically proven to be effective for patients with CVD. However, the underlying mechanisms have not been completely elucidated. PURPOSE: To investigate the protective effects of QXJYG against AS and its potential mechanisms. METHODS: QXJYG was orally administered at doses of 1.664 and 4.992 g·kg-1·d-1 in a high-fat diet (HFD)-induced AS model using ApoE-/- mice. Histopathological and immunohistochemical analyses, ELISA, untargeted and targeted metabolomics analysis, 16S rRNA analysis, and RT-qPCR were performed to identify the therapeutic effects and mechanisms of QXJYG in treating HFD-induced AS. RESULTS: QXJYG retarded HFD-induced weight gain and reduced the increased serum levels of total cholesterol, triglycerides, and low-density lipoprotein-cholesterol, whereas high-dose QXJYG increased the serum level of high-density lipoprotein-cholesterol in HFD-fed ApoE-/- mice. Meanwhile, QXJYG reduced the serum levels, as well as aortas mRNA levels of the inflammatory cytokines, IL-1ß and IL-6, which indicates that QXJYG is effective against metaflammation. Mechanistically, QXJYG reshaped the gut microbiota and its associated bile acids (BAs) metabolomic phenotype, partly by increasing the levels of BA synthesis enzymes, hepatic CYP7A1, and CYP27A1, while decreasing ileal FGF15 and ß-Klotho mRNA expression, favoring facilitated de novo BAs synthesis and thereby driving cholesterol catabolic excretion. CONCLUSION: Our findings indicate that QXJYG is effective against HFD-triggered chronic inflammation, and contributes to the alleviation of AS development, and the antiatherogenic properties of QXJYG may be partly due to the remodeling of the gut microbiota and BA metabolism. Although the results are encouraging, further clinical studies of anti-AS herbal medicines are required to elucidate the full potential of the gut microbiota and BA metabolism.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Apolipoproteínas E , Aterosclerose/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas , Homeostase , Humanos , Inflamação/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , RNA Ribossômico 16S
7.
Neuroscience ; 496: 179-189, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750110

RESUMO

Major depressive disorder (MDD) is a heterogeneous mental disorder for which the precise assessment of symptom severity remains challenging. Studies have consistently found that the microbiota-gut-brain (MGB) axis is profoundly altered in MDD, but whether MGB-relevant clinical parameters are applicable to depression subphenotyping remains largely unexplored. In this prospective study, we assessed the taxonomic and metabolic signatures of fecal microbiota from 45 unmedicated MDD patients and explored their associations with the severity of depression and anxiety symptoms as measured by Hamilton depression scale-17 (HAMD-17) and Hamilton anxiety scale-14 (HAMA-14), respectively. The global microbial compositions of MDD patients with mild, moderate and severe symptoms were largely similar. Nevertheless, multiple discriminative bacterial taxa could be identified among the subgroups across the genus to species level. The abundance of fecal Streptococcus was highly correlated with both HAMD and HAMA scores. Patients with severe depression symptoms showed significantly higher abundance of Phascolarctobacterium and Akkermansia, while enrichment of Akkermansia, Coprococcus and Streptococcus were observed with severe anxiety symptoms. In addition, fecal microbial metabolite indole-3-carboxyaldehyde proved useful to discriminate the severity of depression or anxiety symptoms. Together, our results support the utility of microbial taxa and metabolites as potential MGB-based biomarker panel for stratifying the symptom severity of MDD patients.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Ansiedade , Depressão , Transtorno Depressivo Maior/diagnóstico , Humanos , Estudos Prospectivos
8.
Brain Behav Immun ; 102: 11-22, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143877

RESUMO

Gut microbiome disturbances have been widely implicated in major depressive disorder (MDD), although the identity of causal microbial species and the underlying mechanisms are yet to be fully elucidated. Here we show that Bacteroides species enriched in the gut microbiome from MDD patients differentially impact the susceptibility to depressive behaviors. Transplantation of fecal microbiome from MDD patients into antibiotic-treated mice induced anxiety and despair-like behavior and impaired hippocampal neurogenesis. Colonization of Bacteroides fragilis, Bacteroides uniformis, and, to a lesser extent, Bacteroides caccae, but not Bacteroides ovatus, recapitulated the negative effects of MDD microbiome on behavior and neurogenesis. The varying impacts of Bacteroides species were partially explained by differential alternations of tryptophan pathway metabolites and neurotransmitters along the gut-brain axis. Notably, an intensified depletion of cerebral serotonin concurred with the enhanced susceptibility to depression. Together, these findings identify select Bacteroidetes species that contribute to depression susceptibility in mice by metabolic regulation along the gut-brain axis.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Animais , Bacteroides , Encéfalo/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos
9.
Aging (Albany NY) ; 13(8): 12160-12178, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33901014

RESUMO

We previously reported the neuroprotective effects of (+)-balasubramide derived compound 3C, but its action on atherosclerosis in vivo remains unknown. The study was designed to investigate the potential effects of 3C on atherogenesis and explore the possible underlying mechanisms. 3C ameliorated high-fat diet-induced body weight gain, hyperlipidemia, and atherosclerotic plaque burden in apolipoprotein E-deficient (ApoE-/-) mice after 10 weeks of treatment. 3C suppressed the expression of genes involved in triglyceride synthesis in liver. 3C prevented aortic inflammation as evidenced by reduction of adhesive molecule levels and macrophage infiltration. Mechanistic studies revealed that activation of AMP-activated protein kinase (AMPK) is central to the athero-protective effects of 3C. Increased AMPK activity by 3C resulted in suppressing interferon-γ (IFN-γ) induced activation of signal transducer and activator of transcription-1 (STAT1) and stimulator of interferon genes (STING) signaling pathways and downstream pro-inflammatory markers. Moreover, 3C inhibited ox-LDL triggered lipid accumulation and IFN-γ induced phenotypic switch toward M1 macrophage in RAW 264.7 cells. Our present data suggest that 3C prevents atherosclerosis via pleiotropic effects, including amelioration of lipid profiles, vascular inflammation and macrophage pro-inflammatory phenotype. 3C has the potential to be developed as a promising drug for atherosclerosis and related cardiovascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Intraperitoneais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout para ApoE , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Nat Commun ; 12(1): 271, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431867

RESUMO

Dietary patterns and psychosocial factors, ubiquitous part of modern lifestyle, critically shape the gut microbiota and human health. However, it remains obscure how dietary and psychosocial inputs coordinately modulate the gut microbiota and host impact. Here, we show that dietary raffinose metabolism to fructose couples stress-induced gut microbial remodeling to intestinal stem cells (ISC) renewal and epithelial homeostasis. Chow diet (CD) and purified diet (PD) confer distinct vulnerability to gut epithelial injury, microbial alternation and ISC dysfunction in chronically restrained mice. CD preferably enriches Lactobacillus reuteri, and its colonization is sufficient to rescue stress-triggered epithelial injury. Mechanistically, dietary raffinose sustains Lactobacillus reuteri growth, which in turn metabolizes raffinose to fructose and thereby constituting a feedforward metabolic loop favoring ISC maintenance during stress. Fructose augments and engages glycolysis to fuel ISC proliferation. Our data reveal a diet-stress interplay that dictates microbial metabolism-shaped ISC turnover and is exploitable for alleviating gut disorders.


Assuntos
Bactérias/metabolismo , Autorrenovação Celular , Dieta , Intestinos/microbiologia , Células-Tronco/citologia , Estresse Fisiológico , Animais , Metabolismo dos Carboidratos , Proliferação de Células , Doença Crônica , Células Epiteliais/microbiologia , Feminino , Frutose/metabolismo , Microbioma Gastrointestinal , Glicólise , Lactobacillus/metabolismo , Camundongos Endogâmicos BALB C , Polifenóis/metabolismo , Rafinose/metabolismo
11.
Phytomedicine ; 79: 153345, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33002829

RESUMO

BACKGROUND: Total glucosides of peony (TGP), extracted from the root and rhizome of Paeonia lactiflora Pall, has well-confirmed immunomodulatory efficacy in the clinic. However, the mechanism and active ingredients remain largely unclear. HYPOTHESIS/PURPOSE: Our previous study revealed a low systemic exposure but predominant gut distribution of TGP components. The aim of this study was to investigate involvement of the gut microbiota in the immunoregulatory effects and identify the active component. METHODS: Mice received 3% DSS to establish a model of colitis. The treatment group received TGP or single paeoniflorin (PF) or albiflorin (AF). Body weight, colon length, inflammatory and histological changes were assessed. Gut microbiota structure was profiled by 16s rRNA sequencing. Antibiotic treatment and fecal transplantation were used to explore the involvement of gut microbiota. Metabolomic assay of host and microbial metabolites in colon was performed. RESULTS: TGP improved colonic injury and gut microbial dysbiosis in colitis mice, and PF was responsible for the protective effects. Fecal microbiota transfer from TGP-treated mice conferred resilience to colitis, while antibiotic treatment abrogated the protective effects. Both TGP and PF decreased colonic indole-3-lactate (ILA), a microbial tryptophan metabolite. ILA was further identified as an inhibitor of epithelial autophagy and ILA supplementation compromised the benefits of TGP. CONCLUSION: Our findings suggest that TGP acts in part through a gut microbiota-ILA-epithelial autophagy axis to alleviate colitis.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucosídeos/farmacologia , Indóis/metabolismo , Monoterpenos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Colite/induzido quimicamente , Medicamentos de Ervas Chinesas/farmacologia , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Glucosídeos/imunologia , Células HCT116 , Humanos , Fatores Imunológicos/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Paeonia/química , RNA Ribossômico 16S/genética
12.
J Pharm Biomed Anal ; 191: 113531, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32889345

RESUMO

Untargeted metabolomics provides a comprehensive investigation of metabolites and enables the discovery of biomarkers. Improvements in sample preparation, chromatographic separation and raw data processing procedure greatly enhance the metabolome coverage. In addition, database-dependent software identification is also essential, upon which enhances the identification confidence and benefits downstream biological analysis. Herein, we developed an improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. In this work, sample preparation was optimized by considering chemical properties of different metabolites. Chromatographic separation was done by two different columns and MS detection was performed under positive and negative ion modes regarding to the different polarities of metabolites. According to the characteristics of the collected data, an improved identification and evaluation strategy was developed involving fragment simulation and MS/MS library search based on two commonly used databases, HMDB and METLIN. Such combination integrated information from different databases and was aimed to enhance identification confidence by considering the rationality of fragmentation, biological sources and functions comprehensively. In addition, decision tree analysis and lab-developed database were also introduced to assist the data processing and enhance the identification confidence. Finally, the feasibility of the developed strategy was validated by liver samples of obesity mice and controls. 238 metabolites were accurately detected, which was beneficial for the subsequent biomarker discovery and downstream pathway analysis. Therefore, the developed strategy remarkably facilitated the identification accuracy and the confirmation of metabolites in untargeted metabolomics.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Metaboloma , Camundongos
13.
Trends Endocrinol Metab ; 31(11): 818-834, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32284282

RESUMO

Gut microbial metabolism is intimately coupled with host health and disease. Aromatic amino acid (AAA) catabolism by the gut microbiome yields numerous metabolites that may regulate immune, metabolic, and neuronal responses at local and distant sites. Such a chemical dialog between host cells and the gut microbiome is shaped by environmental cues, and may become dysregulated in gastrointestinal and systems diseases. Increasing knowledge of the bacterial pathway and signaling basis may shed additional light on metabolic host-microbiome crosstalk that remains untapped for drug discovery. Here, we update our understanding of microbial AAA metabolism and its impacts on host physiology and disease. We also consider open questions related to therapeutically mining these signaling metabolites and how recent concepts and tools may drive this area forward.


Assuntos
Aminoácidos Aromáticos/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Animais , Humanos
14.
Anal Chem ; 91(10): 6724-6729, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31002228

RESUMO

Monoacylglycerols (MAGs) are active mediators involved in multiple biological processes closely related to the pathological development of diabetes, obesity, and cancers. Sensitive and unambiguous detection of MAGs is thus essential; however, previous methods are both indirect and labor-intensive. Herein, we developed a straightforward approach by derivatization of MAGs with 3-nitrophenylboronic acid (3-NPB) for sensitive and selective analysis in cell lysates, tissues, and serums by mass spectrometry (MS). Reaction occurring between boronic acid and cis-diol moiety of MAGs blocked the formation of multiple adduct ions and tuned MAGs to negatively charged carrying species. In addition, the characteristic isotopic distribution of boron specialized the presence of modified MAGs in MS and led to distinctive identification. To eliminate endogenous interferences, we further introduced isotopic labeled d4-NPB equivalently premixed with d0-NPB to perform MAG derivatization, which resulted in rapid identification of modified MAGs in biofluids by displaying doublet peak characteristics. A comparative quantification approach was thereafter evoluted to reveal the amount variation of MAGs by d0-NPB and d4-NPB separately derivatized in different pathological tissue and serum samples. The presently developed NPB-based derivatization approach is expected to be essential in the metabolic study of MAG-related diseases.


Assuntos
Ácidos Borônicos/química , Monoglicerídeos/sangue , Animais , Ácidos Borônicos/síntese química , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Deutério/química , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Camundongos Obesos , Monoglicerídeos/química
15.
Brain Behav Immun ; 79: 244-255, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30790702

RESUMO

Psychological stress is well known to increase colitis susceptibility and promote relapse. Metabolic changes are commonly observed under psychological stress, but little is known how this relates to the progression of colitis. Here we show that kynurenic acid (KA) is an endogenous driver of social stress-exacerbated colitis via regulating the magnitude of NLRP3 inflammasome. Chronic social defeat stress (CSDS) in mice induced colonic accumulation of KA, and mice receiving KA during CSDS had defects in colonic NLRP3 inflammasome activation. Mechanistically, KA activated GPR35 signaling to induce autophagy-dependent degradation of NLRP3 in macrophages, thereby suppressing IL-1ß production. Socially defeated mice with KA treatment displayed enhanced vulnerability to subsequent dextran sulphate sodium (DSS)-induced colonic injury and inflammatory disturbance, and this effect was reversed by autophagic inhibition that blocked the NLRP3-suppressive effect of KA. Thus, our research describes a mechanism by which KA/GPR35 signaling represses adaptive NLRP3 inflammasome activation to increase colitis susceptibility and suggests a potential metabolic target for the intervention of stress-related colonic disorder.


Assuntos
Colite/fisiopatologia , Ácido Cinurênico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas de Transporte/metabolismo , Colite/imunologia , Colo/metabolismo , Sulfato de Dextrana , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo
16.
J Proteome Res ; 17(2): 813-821, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302971

RESUMO

Different components of Panax ginseng have different properties and medicinal effects. Metabonomics was a prospective approach to analyze the global response of endogenous metabolites to physiological and pathological processes. In this study, an untargeted metabonomics method using GC/TOFMS combined with multivariate statistical techniques was applied to compare entire metabolite differences and the antistress variations among four components of P. ginseng, namely, total ginsenosides (TG), panaxadiol (PD), panaxatriol (PT), and ginseng polysaccharide (PS), in Wistar rats. The results of metabolite analysis showed that numerous urine metabolites involving neurotransmitters, amino acids, organic acids, and gut microbiota metabolites were changed after administration of the four components of P. ginseng, with TG having the least impact on urinary metabolites. The urinary metabolite profiling of these rats exposed to acute combined stress (forced swimming and behavior restriction) demonstrated that the four ginseng components attenuated urine metabolite changes involving gut microbiota metabolites, tricarboxylic acid (TCA) cycle and energy metabolites, and organic acids to different degrees, with TG improving most of the metabolites altered by stress.


Assuntos
Ansiolíticos/farmacologia , Ginsenosídeos/farmacologia , Panax/química , Polissacarídeos/farmacologia , Estresse Psicológico/tratamento farmacológico , Aminoácidos/urina , Animais , Ansiolíticos/isolamento & purificação , Ácidos Carboxílicos/urina , Cromatografia Gasosa , Metabolismo Energético/efeitos dos fármacos , Ginsenosídeos/isolamento & purificação , Imobilização , Masculino , Metaboloma , Metabolômica/métodos , Extratos Vegetais/química , Polissacarídeos/isolamento & purificação , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Psicológico/fisiopatologia , Estresse Psicológico/urina , Natação
17.
FASEB J ; 32(4): 1944-1956, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29183965

RESUMO

Elevated kynurenine (Kyn) production from tryptophan (Trp) metabolism is a biomarker of immune dysregulation in depression, but its mechanistic contributions to the behavioral symptoms are poorly defined. In this study, Kyn was shown to be a metabolic regulator of proinflammatory monocytes that orchestrated peripheral immune activation and neuroinflammation in depressive mice. Kyn-induced depressive behavior was paralleled by brain infiltration of proinflammatory monocytes and astrocytic activation. Kyn enhanced chemokine (C-C motif) ligand-2-mediated chemotaxis of monocytes and their proinflammatory capability on cocultured astrocytes in vitro, which involved the activation of aryl hydrocarbon receptor (AhR) signaling. Kyn augmented, whereas pharmacological AhR blockade rescued, systemic inflammation-induced monocyte trafficking, neuroimmune disturbance, and depressive-like behavior in mice. The behavior-exacerbating effects of the Kyn-AhR axis were dampened with prior depletion of functional monocytes in the periphery. The findings in our study extend understanding of an immunologic effect of Kyn that links Trp metabolism and inflammatory signaling in depression pathology, with potential therapeutic implications for depressive disorders.-Zang, X., Zheng, X., Hou, Y., Hu, M., Wang, H., Bao, X., Zhou, F., Wang, G., Hao, H. Regulation of proinflammatory monocyte activation by the kynurenine-AhR axis underlies immunometabolic control of depressive behavior in mice.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia de Leucócito , Depressão/metabolismo , Cinurenina/metabolismo , Monócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Transdução de Sinais
18.
Sci Rep ; 7(1): 7020, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765538

RESUMO

The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.


Assuntos
Resposta ao Choque Térmico , Kisspeptinas/metabolismo , Hepatopatias/patologia , Metabolômica , Animais , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Histocitoquímica , Microscopia Eletrônica , Estresse Oxidativo , Ratos
19.
PLoS One ; 12(7): e0179164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692647

RESUMO

Kisspeptin is a peptide encoded by the Kiss 1 gene and is also called metastin. Previous studies have generally focused on several functions of this peptide, including metastasis, puberty, vasoconstriction and reproduction. However, few studies have focused on the cardiac functions of kisspeptin. In the present study, cardiac histomorphology was observed via TEM (transmission electron microscope) and HE and Masson staining to observe instinctive changes. Serum metabolites levels were also measured and analyzed using GC/TOF-MS after injection with kisspeptin-10. A gene chip was employed to screen the potential genes and pathways in the myocardium at the transcriptional leve, while RT-PCR and Western Blot were conducted to verify the relevant mRNA and protein expression, respectively. Histopathological findings demonstrated that there were many irregular wavy contractions through HE staining and increased fibrosis around the heart cells through Masson staining after treatment with kisspeptin-10. Additionally, the main changes in ultrastructure, including changes in mitochondrial and broken mitochondrial cristae, could be observed with TEM after treatment with kisspeptin-10. The PCA scores plot of the serum metabolites was in the apparent partition after injection of kisspeptin-10. Twenty-six obviously changed metabolites were detected and classified as amino acids, carbohydrate metabolites, organic acids and other metabolites. Furthermore, gene chip analysis showed 1112 differentially expressed genes after treatment with kisspeptin-10, including 330 up-regulated genes and 782 down-regulated genes. These genes were enriched in several signaling pathways related to heart diseases. The RT-PCR result for ITGB8, ITGA4, ITGB7, MYL7, HIF1-α and BNP corresponded with the gene chip assay. Moreover, the upregulated genes ITGB8, ITGA4 and BNP also displayed consistent protein levels in Western Blot results. In summary, these findings suggest that kisspeptin-10 could alter the morphology and structure of myocardial cells, serum metabolite levels, and expression of genes and proteins in heart tissues. Our work determined the profound effects of kisspeptin-10 on the heart, which could further lead to the development of therapeutics related to kisspeptin-10, including antagonists and analogs.


Assuntos
Kisspeptinas/sangue , Kisspeptinas/farmacologia , Miocárdio/metabolismo , Animais , Western Blotting , Cardiomiopatias/genética , Análise Discriminante , Fibrose , Kisspeptinas/genética , Kisspeptinas/metabolismo , Análise dos Mínimos Quadrados , Masculino , Metaboloma/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/ultraestrutura , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Neuropeptides ; 64: 47-60, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28434792

RESUMO

Neuromedin U (NMU) is a highly conserved neuropeptide that performs a variety of physiological functions in animals via neuromedin U receptor-1 (NMUR1) and neuromedin U receptor-2 (NMUR2). In this study, we cloned the pig NMU, NMUR1 and NMUR2 genes. Bioinformatics analysis demonstrated that the pig NMU cDNA encoded the amino acids Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 at the C-terminus and that the NMU receptors, which are G-protein-coupled receptors (GPCRs), contained the seven transmembrane domains typical of GPCRs. Systemic NMU, NMUR1 and NMUR2 mRNA expression was investigated in various pig tissues using real-time RT-PCR. NMU mRNA was expressed both in the central nervous system (CNS) and in peripheral tissues. NMUR1 mRNA was widely expressed in peripheral tissues, whereas NMUR2 mRNA was mainly expressed in the CNS. Immunohistochemistry (IHC) was used to determine the expression patterns of NMU and NMUR1, which were predominantly located in the gastrointestinal tract, genitourinary organs, and immune organs. This study presents molecular and morphological data to aid in additional NMU research in pigs.


Assuntos
Expressão Gênica/fisiologia , Neuropeptídeos/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Dipeptídeos/metabolismo , Feminino , Imuno-Histoquímica/métodos , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...