Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Cell Rep ; 38(2): 110223, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021072

RESUMO

MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.


Assuntos
Ativação Linfocitária/fisiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Alelos , Animais , Linfócitos B/metabolismo , Feminino , Humanos , Ativação Linfocitária/genética , MAP Quinase Quinase 1/fisiologia , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo
4.
Front Cell Dev Biol ; 9: 639022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386488

RESUMO

Several studies have established the crucial role of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.

5.
Dis Model Mech ; 13(12)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158935

RESUMO

Pleuropulmonary blastoma (PPB) is a very rare pediatric lung disease. It can progress from abnormal epithelial cysts to an aggressive sarcoma with poor survival. PPB is difficult to diagnose as it can be confounded with other cystic lung disorders, such as congenital pulmonary airway malformation (CPAM). PPB is associated with mutations in DICER1 that perturb the microRNA (miRNA) profile in lung. How DICER1 and miRNAs act during PPB pathogenesis remains unsolved. Lung epithelial deletion of the Yin Yang1 (Yy1) gene in mice causes a phenotype mimicking the cystic form of PPB and affects the expression of key regulators of lung development. Similar changes in expression were observed in PPB but not in CPAM lung biopsies, revealing a distinctive PPB molecular signature. Deregulation of molecules promoting epithelial-mesenchymal transition (EMT) was detected in PPB specimens, suggesting that EMT might participate in tumor progression. Changes in miRNA expression also occurred in PPB lung biopsies. miR-125a-3p, a candidate to regulate YY1 expression and lung branching, was abnormally highly expressed in PPB samples. Together, these findings support the concept that reduced expression of YY1, due to the abnormal miRNA profile resulting from DICER1 mutations, contributes to PPB development via its impact on the expression of key lung developmental genes.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Epitélio/patologia , Deleção de Genes , Pulmão/patologia , Blastoma Pulmonar/genética , Blastoma Pulmonar/patologia , Fator de Transcrição YY1/genética , Células A549 , Animais , Sequência de Bases , Biomarcadores/metabolismo , Biópsia , Caderinas/metabolismo , Progressão da Doença , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fator 9 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição YY1/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
7.
J Immunol ; 202(6): 1815-1825, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710049

RESUMO

LPS-activated macrophages require metabolic reprogramming and glucose uptake mediated by hypoxia-inducible factor (HIF)-1 α and glucose transporter 1 (Glut1) expression for proinflammatory cytokine production, especially IL-1ß. This process is tightly regulated through activation of MAPK kinases, including the MEK/ERK pathway as well as several transcription factors including HIF-1α. Although MAPK kinase (MEK) 2 deficiency had no significant effect on NO, TNF-α, or IL-12 production in response to LPS challenge, MEK2-deficient murine bone marrow-derived macrophages (BMDMs) exhibited lower IL-10 production. Importantly, MEK2-deficient BMDMs exhibited a preserved ERK1/2 phosphorylation, higher HIF-1α and Glut1 levels, and substantially increased IL-1ß as well as IL-6 production in response to LPS stimulation. Knockdown of HIF-1α expression via short interference RNA decreased the level of HIF-1α expression in MEK2-deficient BMDMs and decreased IL-1ß production in response to LPS treatment. Furthermore, we performed gain of function experiments by overexpressing MEK2 protein in RAW264.7 cells. LPS stimulation of MEK2 overexpressed in RAW264.7 cells led to a marked decreased IL-1ß production. Finally, we investigated the role of Mek1 and Mek2 double and triple mutation on ERK phosphorylation, HIF-1α expression, and IL-1ß production. We found that MEK2 is the major kinase, which inversely proportionally regulates HIF-1α and IL-1ß expression independent of ERK activation. Our findings demonstrate a novel regulatory function for MEK2 in response to TLR4 activation in IL-1ß production through modulating HIF-1α expression.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , MAP Quinase Quinase 2/metabolismo , Macrófagos/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 2/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Mutantes , Células RAW 264.7
8.
Dis Model Mech ; 11(3)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29590634

RESUMO

The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper.


Assuntos
Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , MAP Quinase Quinase 1/genética , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/patologia , Contagem de Células , Embrião de Mamíferos/citologia , Fácies , Fibroblastos/enzimologia , Duplicação Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , MAP Quinase Quinase 1/química , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Mutantes , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
9.
J Exp Biol ; 220(Pt 24): 4571-4577, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074702

RESUMO

Fetal development of the respiratory tract and diaphragm requires strict coordination between genetically controlled signals and mechanical forces produced by the neural network that generates breathing. HOXA5, which is expressed in the mesenchyme of the trachea, lung and diaphragm, and in phrenic motor neurons, is a key transcription factor regulating lung development and function. Consequently, most Hoxa5-/- mutants die at birth from respiratory failure. However, the extensive effect of the null mutation makes it difficult to identify the origins of respiratory dysfunction in newborns. To address the physiological impact of Hoxa5 tissue-specific roles, we used conditional gene targeting with the Dermo1Cre and Olig2Cre mouse lines to produce specific Hoxa5 deletions in the mesenchyme and motor neurons, respectively. Hoxa5 expression in the mesenchyme is critical for trachea development, whereas its expression in phrenic motor neurons is essential for diaphragm formation. Breathing measurements in adult mice with whole-body plethysmography demonstrated that, at rest, only the motor neuron deletion affects respiration, resulting in higher breathing frequency and decreased tidal volume. But subsequent exposure to a moderate hypoxic challenge (FiO2 =0.12; 10 min) revealed that both mutant mice hyperventilate more than controls. Hoxa5flox/flox;Dermo1+/Cre mice showed augmented tidal volume while Hoxa5flox/flox;Olig2+/Cre mice had the largest increase in breathing frequency. No significant differences were observed between medulla-spinal cord preparations from E18.5 control and Hoxa5flox/flox;Olig2+/Cre mouse embryos that could support a role for Hoxa5 in fetal inspiratory motor command. According to our data, Hoxa5 expression in the mesenchyme and phrenic motor neurons controls distinct aspects of respiratory development.


Assuntos
Proteínas de Homeodomínio/genética , Pulmão/embriologia , Fosfoproteínas/genética , Insuficiência Respiratória/genética , Animais , Diafragma/fisiopatologia , Deleção de Genes , Marcação de Genes , Proteínas de Homeodomínio/fisiologia , Técnicas In Vitro , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Knockout , Mutação , Fosfoproteínas/fisiologia , Pletismografia Total , Insuficiência Respiratória/fisiopatologia , Traqueia/fisiopatologia , Fatores de Transcrição
10.
Development ; 144(19): 3547-3561, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827394

RESUMO

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fosfoproteínas/metabolismo , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Cartilagem/embriologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Cruzamentos Genéticos , Diafragma/inervação , Diafragma/metabolismo , Diafragma/ultraestrutura , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Homeodomínio/genética , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos/genética , Fosfoproteínas/genética , Mucosa Respiratória/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Traqueia/embriologia , Traqueia/metabolismo , Fatores de Transcrição
11.
Dev Dyn ; 246(1): 72-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748998

RESUMO

BACKGROUND: Reciprocal epithelial-mesenchymal communications are critical throughout lung development, dictating branching morphogenesis and cell specification. Numerous signaling molecules are involved in these interactions, but the way epithelial-mesenchymal crosstalk is coordinated remains unclear. The ERK/MAPK pathway transduces several important signals in lung formation. Epithelial inactivation of both Mek genes, encoding ERK/MAPK kinases, causes lung agenesis and death. Conversely, Mek mutation in mesenchyme results in lung hypoplasia, trachea cartilage malformations, kyphosis, omphalocele, and death. Considering the negative impact of kyphosis and omphalocele on intrathoracic space and, consequently, on lung growth, the exact role of ERK/MAPK pathway in lung mesenchyme remains unresolved. RESULTS: To address the role of the ERK/MAPK pathway in lung mesenchyme in absence of kyphosis and omphalocele, we used the Tbx4Cre deleter mouse line, which acts specifically in lung mesenchyme. These Mek mutants did not develop kyphosis and omphalocele but they presented lung hypoplasia, tracheal defects, and neonatal death. Tracheal cartilage anomalies suggested a role for the ERK/MAPK pathway in the control of chondrocyte hypertrophy. Moreover, expression data indicated potential interactions between the ERK/MAPK and canonical Wnt pathways during lung formation. CONCLUSIONS: Lung development necessitates a functional ERK/MAPK pathway in the lung mesenchymal layer in order to coordinate efficient epithelial-mesenchymal interactions. Developmental Dynamics 246:72-82, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Comunicação Celular , Pulmão/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/fisiologia , Mesoderma/metabolismo , Organogênese , Animais , Condrócitos/patologia , Epitélio/embriologia , Epitélio/fisiologia , Pulmão/embriologia , Sistema de Sinalização das MAP Quinases/genética , Mesoderma/embriologia , Mesoderma/fisiologia , Camundongos , Mutação , Traqueia/anormalidades , Via de Sinalização Wnt
12.
Development ; 142(17): 2981-95, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26329601

RESUMO

Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.


Assuntos
Epitélio/embriologia , Epitélio/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese , Fator de Transcrição YY1/metabolismo , Animais , Apoptose , Padronização Corporal , Cartilagem/anormalidades , Cartilagem/embriologia , Cartilagem/patologia , Diferenciação Celular , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Endoderma/embriologia , Endoderma/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Pneumopatias/congênito , Pneumopatias/patologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/patologia , Fenótipo , Blastoma Pulmonar/metabolismo , Blastoma Pulmonar/patologia , Ribonuclease III/metabolismo , Traqueia/anormalidades , Traqueia/embriologia , Traqueia/patologia
13.
J Biol Chem ; 284(35): 23397-404, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19574221

RESUMO

Transforming growth factor-beta1 (TGF-beta1) is the most abundant TGF-beta isoform detected in bone and is an important functional modulator of osteoclasts. TGF-beta1 can induce osteoclast apoptosis; however, the apoptotic pathways involved in this process are not known. We show here that human osteoclasts express both type-I and type-II TGF-beta receptors. In the absence of survival factors, TGF-beta1 (1 ng/ml) induced osteoclast apoptosis. The expression of activated caspase-9, but not that of caspase-8, was increased by TGF-beta1 stimulation, and the rate of TGF-beta1-induced apoptosis was significantly lower in the presence of a caspase-9 inhibitor. To study further the mechanisms involved in TGF-beta1-induced osteoclast apoptosis, we investigated TGF-beta1 signaling, which primarily involves the Smad pathway, but also other pathways that may interfere with intracellular modulators of apoptosis, such as mitogen-activated protein (MAP) kinases and Bcl2 family members. We show here that early events consisted of a trend toward increased expression of extracellular signal-regulated kinase (ERK), and then TGF-beta1 significantly induced the activation of p38 and Smad2 in a time-dependent manner. These signaling cascades may activate the intrinsic apoptosis pathway, which involves Bim, the expression of which was increased in the presence of TGF-beta1. Furthermore, the rate of TGF-beta1-induced osteoclast apoptosis was lower when Bim expression was suppressed, and inhibiting the Smad pathway abolished Bim up-regulation following TGF-beta stimulation. This could correspond to a regulatory mechanism involved in the inhibition of osteoclast activity by TGF-beta1.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Caspase 8/metabolismo , Caspase 9/metabolismo , Células Cultivadas , Feminino , Humanos , Proteínas de Membrana/genética , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
14.
J Cell Physiol ; 216(2): 536-42, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18338379

RESUMO

Osteoprotegerin (OPG) is a secreted decoy receptor that recognizes RANKL, and blocks the interaction between RANK and RANKL, leading to the inhibition of osteoclast differentiation and activation. As OPG is a major inhibitor of bone resorption, we wondered whether OPG could modulate osteoclast survival/apoptosis. Osteoclast apoptosis was evaluated by adding various doses of OPG to human osteoclast cultures obtained from cord blood monocytes. Surprisingly, apoptosis decreased after adding the OPG. We hypothesized that OPG may block its second ligand, TRAIL, which is involved in osteoclast apoptosis. We showed that osteoclasts expressed TRAIL, and that TRAIL levels in the culture medium dose-dependently decreased in presence of OPG, as did the level of activated caspase-8 in osteoclasts. In addition, the expression of TRAIL by osteoclasts was not affected in the presence of OPG. Our findings suggest that OPG inhibits osteoclast apoptosis, at least in part, by binding and thus inhibiting endogenously produced TRAIL in human osteoclast cultures. TRAIL could be an autocrine factor for the regulation of osteoclast survival/apoptosis.


Assuntos
Apoptose/fisiologia , Osteoclastos/fisiologia , Osteoprotegerina/metabolismo , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Caspase 8/metabolismo , Células Cultivadas , Meios de Cultura/química , Ativação Enzimática , Células HeLa , Humanos , Osteoclastos/citologia , Osteoprotegerina/genética , Ligante RANK/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...