Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 15: 205, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26283631

RESUMO

BACKGROUND: The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). RESULTS: Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. CONCLUSIONS: This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variation.


Assuntos
Mudança Climática , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vitis/fisiologia , Frutas/genética , Frutas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reprodução , Sementes/genética , Sementes/metabolismo , Temperatura , Vitis/genética , Vitis/metabolismo
2.
BMC Plant Biol ; 13: 217, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24350702

RESUMO

BACKGROUND: In grapevine, as in other fruit crops, fruit size and seed content are key components of yield and quality; however, very few Quantitative Trait Loci (QTLs) for berry weight and seed content (number, weight, and dry matter percentage) have been discovered so far. To identify new stable QTLs for marker-assisted selection and candidate gene identification, we performed simultaneous QTL detection in four mapping populations (seeded or seedless) with various genetic backgrounds. RESULTS: For berry weight, we identified five new QTLs, on linkage groups (LGs) 1, 8, 11, 17 and 18, in addition to the known major QTL on LG 18. The QTL with the largest effect explained up to 31% of total variance and was found in two genetically distant populations on LG 17, where it colocalized with a published putative domestication locus. For seed traits, besides the major QTLs on LG 18 previously reported, we found four new QTLs explaining up to 51% of total variance, on LGs 4, 5, 12 and 14. The previously published QTL for seed number on LG 2 was found related in fact to sex. We found colocalizations between seed and berry weight QTLs only for the major QTL on LG 18 in a seedless background, and on LGs 1 and 13 in a seeded background. Candidate genes belonging to the cell number regulator CNR or cytochrome P450 families were found under the berry weight QTLs on LGs 1, 8, and 17. The involvement of these gene families in fruit weight was first described in tomato using a QTL-cloning approach. Several other interesting candidate genes related to cell wall modifications, water import, auxin and ethylene signalling, transcription control, or organ identity were also found under berry weight QTLs. CONCLUSION: We discovered a total of nine new QTLs for berry weight or seed traits in grapevine, thereby increasing more than twofold the number of reliable QTLs for these traits available for marker assisted selection or candidate gene studies. The lack of colocalization between berry and seed QTLs suggests that these traits may be partly dissociated.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Padrões de Herança/genética , Escore Lod , Tamanho do Órgão/genética , Fenótipo , Característica Quantitativa Herdável
3.
BMC Plant Biol ; 11: 57, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21447172

RESUMO

BACKGROUND: Stenospermocarpy is a mechanism through which certain genotypes of Vitis vinifera L. such as Sultanina produce berries with seeds reduced in size. Stenospermocarpy has not yet been characterized at the molecular level. RESULTS: Genetic and physical maps were integrated with the public genomic sequence of Vitis vinifera L. to improve QTL analysis for seedlessness and berry size in experimental progeny derived from a cross of two seedless genotypes. Major QTLs co-positioning for both traits on chromosome 18 defined a 92-kb confidence interval. Functional information from model species including Vitis suggested that VvAGL11, included in this confidence interval, might be the main positional candidate gene responsible for seed and berry development.Characterization of VvAGL11 at the sequence level in the experimental progeny identified several SNPs and INDELs in both regulatory and coding regions. In association analyses performed over three seasons, these SNPs and INDELs explained up to 78% and 44% of the phenotypic variation in seed and berry weight, respectively. Moreover, genetic experiments indicated that the regulatory region has a larger effect on the phenotype than the coding region. Transcriptional analysis lent additional support to the putative role of VvAGL11's regulatory region, as its expression is abolished in seedless genotypes at key stages of seed development. These results transform VvAGL11 into a functional candidate gene for further analyses based on genetic transformation.For breeding purposes, intragenic markers were tested individually for marker assisted selection, and the best markers were those closest to the transcription start site. CONCLUSION: We propose that VvAGL11 is the major functional candidate gene for seedlessness, and we provide experimental evidence suggesting that the seedless phenotype might be caused by variations in its promoter region. Current knowledge of the function of its orthologous genes, its expression profile in Vitis varieties and the strong association between its sequence variation and the degree of seedlessness together indicate that the D-lineage MADS-box gene VvAGL11 corresponds to the Seed Development Inhibitor locus described earlier as a major locus for seedlessness. These results provide new hypotheses for further investigations of the molecular mechanisms involved in seed and berry development.


Assuntos
Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Transcrição Gênica , Vitis/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
4.
BMC Plant Biol ; 10: 284, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176183

RESUMO

BACKGROUND: Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication. RESULTS: In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region. CONCLUSIONS: We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided a specific probe for the identification of chromosome 18 on a cytogenetic map. We evidenced genes showing putative signatures of selection and SNPs significantly associated with berry weight variation in the flb region. In addition, we provided to the community 554 SNPs at the top of chromosome 18 for the development of a genotyping chip for future fine mapping of the flb gene in a F2 population when available.


Assuntos
Cromossomos de Plantas/genética , Mutação , Polimorfismo Genético , Vitis/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Variação Genética , Genótipo , Hibridização in Situ Fluorescente , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Sintenia , Vitis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...