Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 108: 252-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27140694

RESUMO

Histamine is an important neurotransmitter that exerts its physiological actions through H1-4 metabotropic receptors in mammals. It also directly activates ionotropic GABAA receptor (GABAAR) ß3 homooligomers and potentiates GABA responses in αß heterooligomers in vitro, but the respective histamine binding sites in GABAARs are unknown. We hypothesized that histamine binds at the extracellular ß+ß- interface at a position homologous to the GABA binding site of heterooligomeric GABAARs. To test this, we individually mutated several residues at the putative ligand binding minus side of a rat GABAAR ß3 wild type subunit and of a ß3 subunit that was made insensitive to trace Zn(2+) inhibition [ß3(H267A); called (Z)ß3]. (Z)ß3, (Z)ß3(Y62L), (Z)ß3(Q64A), (Z)ß3(Q64E), α1(Z)ß3, or α1(Z)ß3(Y62L) receptors were studied in HEK293T cells using whole cell voltage clamp recording. ß3, ß3(Y62C), ß3(Q64C), ß3(N41C), ß3(D43C), ß3(A45C) or ß3(M115C) receptors were examined in Xenopus oocytes using two-electrode voltage clamp. Histamine directly activated (Z)ß3 and ß3 homooligomers and potentiated GABA actions in α1(Z)ß3 heterooligomers. Receptors containing (Z)ß3(Y62L), ß3(Y62C) and ß3(D43C) showed markedly reduced histamine potency, but homo- and heterooligomers with (Z)ß3(Q64E) exhibited increased potency. The GABAAR αß(γ) competitive antagonist bicuculline elicited sub-maximal agonist currents through (Z)ß3 homooligomers, the potency of which was strongly decreased by (Z)ß3(Y62L). Mutations ß3(N41C), ß3(A45C) and ß3(M115C) disturbed receptor expression or assembly. Computational docking into the crystal structure of homooligomeric ß3 receptors resulted in a histamine pose highly consistent with the experimental findings, suggesting that histamine activates ß3 receptors via a site homologous to the GABA site in αßγ receptors.


Assuntos
Histamina/metabolismo , Simulação de Acoplamento Molecular/métodos , Mutagênese/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Histamina/química , Histamina/farmacologia , Humanos , Estrutura Secundária de Proteína , Ratos , Receptores de GABA-A/química , Xenopus laevis
2.
Drug Metab Dispos ; 43(9): 1326-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109562

RESUMO

Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.


Assuntos
Analgésicos Opioides/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/metabolismo , Analgésicos Opioides/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Brain Res ; 1616: 10-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25935691

RESUMO

Recent studies suggest a functional role for neuronal cytochrome P450 monooxygenase (P450) activity in opioid analgesia. To characterize the relevant receptors, brain areas, and circuits, detailed in vitro and in vivo studies were performed with the highly selective µ opioid receptor agonist DAMGO in neuronal P450-deficient mutant (Null) and control mice. Homogenates of brain regions and spinal cord showed no differences in DAMGO-induced activation of [(35)S]- GTPγS binding between Null and control mice, indicating no genotype differences in µ opioid receptor signaling, receptor affinities or receptor densities. Intracerebroventricular (icv) DAMGO produced robust, near-maximal, analgesic responses in control mice which were attenuated by 50% in Null mice, confirming a role for µ opioid receptors in activating P450-associated responses. Intra-periaqueductal gray (PAG) and intra-rostral ventromedial medulla (RVM) injections of DAMGO revealed deficits in Null (vs. control) analgesic responses, yet no such genotype differences were observed after intrathecal DAMGO administration. Taken with earlier published findings, the present results suggest that activation of µ opioid receptors in both the PAG and in the RVM relieves pain by mechanisms which include nerve-terminal P450 enzymes within inhibitory PAG-RVM projections. Spinal opioid analgesia, however, does not seem to require such P450 enzyme activity.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Neurônios/metabolismo , Nociceptividade/efeitos dos fármacos , Análise de Variância , Animais , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Masculino , Camundongos , Camundongos Transgênicos , Microinjeções , Neurônios/efeitos dos fármacos , Substância Cinzenta Periaquedutal/citologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Fatores de Tempo
4.
Eur J Pharmacol ; 740: 255-62, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25062792

RESUMO

Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/enzimologia , Morfina/farmacologia , NADPH-Ferri-Hemoproteína Redutase/deficiência , Neurônios/enzimologia , Analgesia , Analgésicos Opioides/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Knockout , Morfina/efeitos adversos , Atividade Motora/efeitos dos fármacos , NADPH-Ferri-Hemoproteína Redutase/genética , Limiar da Dor/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos
5.
Brain Res ; 1578: 30-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25020125

RESUMO

Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as "stress-induced analgesia". Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain µ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in µ analgesia. Since µ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female>control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity.


Assuntos
Analgésicos Opioides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Morfina/farmacologia , Estresse Psicológico/enzimologia , Analgesia , Animais , Encéfalo/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/enzimologia , Nociceptividade/fisiologia , Restrição Física , Natação
6.
J Pharmacol Exp Ther ; 347(3): 746-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045421

RESUMO

Nicotine metabolism is believed to affect not only nicotine's pharmacological effects but also nicotine addiction. As a key step toward testing this hypothesis, we have studied nicotine metabolism and nicotine's pharmacological and behavioral effects in a novel knockout mouse model [named Cyp2a(4/5)bgs-null] lacking a number of cytochrome P450 genes known to be or possibly involved in nicotine metabolism, including two Cyp2a and all Cyp2b genes. We found that, compared with wild-type mice, the Cyp2a(4/5)bgs-null mice showed >90% decreases in hepatic microsomal nicotine oxidase activity in vitro, and in rates of systemic nicotine clearance in vivo. Further comparisons of nicotine metabolism between Cyp2a(4/5)bgs-null and Cyp2a5-null mice revealed significant roles of both CYP2A5 and CYP2B enzymes in nicotine clearance. Compared with the behavioral responses in wild-type mice, the decreases in nicotine metabolism in the Cyp2a(4/5)bgs-null mice led to prolonged nicotine-induced acute pharmacological effects, in that null mice showed enhanced nicotine hypothermia and antinociception. Furthermore, we found that the Cyp2a(4/5)bgs-null mice developed a preference for nicotine in a conditioned place preference test, a commonly used test of nicotine's rewarding effects, at a nicotine dose that was 4-fold lower than what was required by wild-type mice. Thus, CYP2A/2B-catalyzed nicotine clearance affects nicotine's behavioral response as well as its acute pharmacological effects in mice. This result provides direct experimental support of the findings of pharmacogenetic studies that suggest linkage between rates of nicotine metabolism and smoking behavior in humans.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Comportamento Animal/efeitos dos fármacos , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Esteroide Hidroxilases/genética , Animais , Temperatura Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Citocromo P-450 CYP2A6 , Família 2 do Citocromo P450 , Meia-Vida , Imersão , Masculino , Camundongos , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Recompensa
7.
Eur J Pharmacol ; 714(1-3): 464-71, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23834775

RESUMO

Improgan, a non-opioid, antinociceptive drug, activates descending analgesic circuits following brain administration, but the improgan receptor remains unidentified. Since biotinylation of drugs can enhance drug potency or facilitate discovery of new drug targets, a biotinylated congener of improgan (CC44) and several related compounds were synthesized and tested for antinociceptive activity. In rats and mice, intracerebroventricular (i.c.v.) administration of CC44 produced dose-dependent reductions in thermal nociceptive (tail flick and hot plate) responses, with 5-fold greater potency than improgan. CC44 also robustly attenuated mechanical (tail pinch) nociception in normal rats and mechanical allodynia in a spinal nerve ligation model of neuropathic pain. Similar to the effects of improgan, CC44 antinociception was reversed by the GABAA agonist muscimol (consistent with activation of analgesic circuits), and was resistant to the opioid antagonist naltrexone (implying a non-opioid mechanism). Also like improgan, CC44 produced thermal antinociception when microinjected into the rostral ventromedial medulla (RVM). Unlike improgan, CC44 (i.c.v.) produced antinociception which was resistant to antagonism by the cannabinoid CB1 antagonist/inverse agonist rimonabant. CC44 was inactive in mice following systemic administration, indicating that CC44 does not penetrate the brain. Preliminary findings with other CC44 congeners suggest that the heteroaromatic nucleus (imidazole), but not the biotin moiety, is required for CC44's antinociceptive activity. These findings demonstrate that CC44 is a potent analgesic compound with many improgan-like characteristics. Since powerful techniques are available to characterize and identify the binding partners for biotin-containing ligands, CC44 may be useful in searching for new receptors for analgesic drugs.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Biotinilação , Cimetidina/análogos & derivados , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Avidina/metabolismo , Cimetidina/química , Cimetidina/metabolismo , Cimetidina/farmacologia , Cimetidina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Masculino , Bulbo/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Estreptavidina/metabolismo
8.
PLoS One ; 8(5): e63028, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667566

RESUMO

TRAM-34, a clotrimazole analog characterized as a potent and selective inhibitor of intermediate-conductance, calcium-activated K(+) (IKCa) channels, has been used extensively in vitro and in vivo to study the biological roles of these channels. The major advantage of TRAM-34 over clotrimazole is the reported lack of inhibition of the former drug on cytochrome P450 (CYP) activity. CYPs, a large family of heme-containing oxidases, play essential roles in endogenous signaling and metabolic pathways, as well as in xenobiotic metabolism. However, previously published work has only characterized the effects of TRAM-34 on a single CYP isoform. To test the hypothesis that TRAM-34 may inhibit some CYP isoforms, the effects of this compound were presently studied on the activities of four rat and five human CYP isoforms. TRAM-34 inhibited recombinant rat CYP2B1, CYP2C6 and CYP2C11 and human CYP2B6, CYP2C19 and CYP3A4 with IC50 values ranging from 0.9 µM to 12.6 µM, but had no inhibitory effects (up to 80 µM) on recombinant rat CYP1A2, human CYP1A2, or human CYP19A1. TRAM-34 also had both stimulatory and inhibitory effects on human CYP3A4 activity, depending on the substrate used. These results show that low micromolar concentrations of TRAM-34 can inhibit several rat and human CYP isoforms, and suggest caution in the use of high concentrations of this drug as a selective IKCa channel blocker. In addition, in vivo use of TRAM-34 could lead to CYP-related drug-drug interactions.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Animais , Humanos , Isoenzimas/antagonistas & inibidores , Ratos
9.
Brain Res ; 1499: 1-11, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23298831

RESUMO

Brain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. In addition, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. Although morphine is thought to act in both the PAG and RVM by pre-synaptic inhibition of inhibitory GABAergic transmission, the present findings show that 1) the mechanism of morphine action differs between these two brainstem areas, and 2) P450 activity within the RVM is important for supraspinal morphine antinociception. Characterization of morphine-P450 interactions within RVM circuits will further enhance the understanding of the biochemistry of pain relief.


Assuntos
Analgésicos Opioides/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Imidazóis/farmacologia , Bulbo/efeitos dos fármacos , Morfina/farmacologia , Sulfetos/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Masculino , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley
10.
J Neurophysiol ; 108(9): 2393-404, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22956800

RESUMO

Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the µ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.


Assuntos
Analgésicos Opioides/toxicidade , Bulbo/efeitos dos fármacos , Neurônios/fisiologia , Dor Nociceptiva/fisiopatologia , Insuficiência Respiratória/induzido quimicamente , Analgésicos Opioides/antagonistas & inibidores , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/antagonistas & inibidores , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Morfina/antagonistas & inibidores , Morfina/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/fisiopatologia
11.
Biochem Pharmacol ; 83(9): 1127-35, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22192818

RESUMO

There is ample pharmacological and physiological evidence for yet unidentified histamine receptors in mammalian brain that are linked to a Cl(-) conductance. In invertebrates, two histamine-gated chloride channels (HisCl α1 and α2) are already well known. HisCl channels are members of the Cys-loop receptor superfamily of ligand-gated ion channels and are closely related to the mammalian GABA(A) and glycine receptors (GlyR). Indeed, they share particularly strong homology within the ligand binding and ion channel domains. Here we discuss the possibility that mammalian HisCl channels might exist among the known GABA(A) or GlyR subunits. Studies published to date support this hypothesis, including evidence for direct histamine gating of GABA(A) ß homomers, histamine potentiation of GABA(A) αß and αßγ heteromeric receptors, and GABA(A) receptor blockade by some antihistamines. We explore what is known about the binding-site structure, function and pharmacology of invertebrate HisCl channels and other histamine binding sites to support and inform a broader search for HisCl channels among the mammalian GABA(A) and GlyR subunits. The discovery and identification of HisCl-like channels in mammals would not only enhance understanding of inhibitory signaling and histamine function in the mammalian brain, but also provide new avenues for development of therapeutic compounds targeting this novel histamine site. This commentary is therefore intended to foster consideration of a novel and potentially important target of histamine and histaminergic drugs in the CNS.


Assuntos
Histamina/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Mamíferos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cloreto/metabolismo , Agonistas dos Receptores Histamínicos/metabolismo , Invertebrados/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Dados de Sequência Molecular , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Receptores Histamínicos/metabolismo
12.
Acta Pharm Sin B ; 2(2): 137-145, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25068100

RESUMO

Cytochrome P450 (CYP)-mediated epoxidation of arachidonic acid (AA) contributes to important biological functions, including the pain-relieving responses produced by analgesic drugs. However, the relevant epoxygenase(s) remain unidentified. Presently, we describe the tissue distribution, high-throughput assay, and pharmacological characteristics of the rat epoxygenase CYP2C24. Following cloning from male rat liver, recombinant baculovirus containing the C-terminal His-tagged cDNA was constructed and used to express the protein in Spodoptera frugiperda (Sf9) cells. Enzymatic activity was detected with membranes, NADPH regenerating system and CYP reductase, and optimized for high throughput screening by use of the Vivid Blue© BOMCC fluorescence substrate. Quantitative real-time PCR identified CYP2C24 m-RNA in liver, kidney, heart, lung, gonad and brain. Screening of CYP2C24 activity against a panel of inhibitors showed a very strong correlation with activity against the human homologue CYP2C19. In agreement with recent findings on CYP2C19, the epoxygenase blockers PPOH and MS-PPOH inhibited CYP2C24 only weakly, confirming that these drugs are not universal epoxygenase inhibitors. Finally, comparisons of the CYP2C24 inhibitor profile with anti-analgesic activity suggests that this isoform does not contribute to brain analgesic drug action. The present methods and pharmacological data will aid in study of the biological significance of this CYP isoform.

13.
Brain Res ; 1424: 32-7, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22015352

RESUMO

Improgan, a non-opioid analgesic, is known to act in the rodent brain stem to produce highly effective antinociception in several acute pain tests. However, improgan has not been studied in any models of chronic pain. To assess the efficacy of improgan in an animal model of neuropathic pain, the effects of this drug were studied on mechanical allodynia following unilateral spinal nerve ligation (SNL) in rats. Intracerebroventricular (icv) improgan (40-80 µg) produced complete, reversible, dose-dependent attenuation of hind paw mechanical allodynia for up to 1h after administration, with no noticeable behavioral or motor side effects. Intracerebral (ic) microinjections of improgan (5-30 µg) into the rostral ventromedial medulla (RVM) also reversed the allodynia, showing this brain area to be an important site for improgan's action. The recently-demonstrated suppression of RVM ON-cell activity by improgan may account for the presently-observed anti-allodynic activity. The present findings suggest that brain-penetrating, improgan-like drugs developed for human use could be effective medications for the treatment of neuropathic pain.


Assuntos
Analgésicos não Narcóticos/administração & dosagem , Cimetidina/análogos & derivados , Neuralgia/tratamento farmacológico , Animais , Axotomia , Dor Crônica/tratamento farmacológico , Cimetidina/administração & dosagem , Injeções Intraventriculares , Masculino , Bulbo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
Drug Metab Dispos ; 39(7): 1221-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21460231

RESUMO

Arachidonate epoxidation, which mediates important biological functions in several tissues, is catalyzed by specific cytochrome P450 (P450) enzymes. Two fatty acid derivatives [2-(2-propynyloxy)-benzenehexanoic acid (PPOH) and N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH)] are used as general, mechanism-based P450 epoxygenase inactivators, but the effects of these drugs on nearly all P450 isoforms are unknown. Here, the activity of these compounds on nine human and three rat recombinant P450s was studied. As expected, PPOH inhibited five known epoxygenases [CYP2B1, 2B6, 2C6, 2C9, and 2C11 (IC(50) = 23-161 µM)] but had little or no activity on P450s typically not considered to be epoxygenases (CYP1A1, 1A2, 1B1, 2A6, 2D6, and 2E1). PPOH was only a very weak inhibitor (IC(50) = ∼300 µM) of CYP2C19, an important human expoxygenase. An unexpected finding was that MS-PPOH (a metabolically stable congener of PPOH) potently inhibited only two P450 epoxygenases (2C9 and 2C11, IC(50) = 11-16 µM) and showed considerably lower activity (IC(50) = >90 µM) on all other P450s tested, including three epoxygenases (CYP2B1, 2B6, and 2C19). In addition, PPOH and MS-PPOH displayed time- and NADPH-dependent inhibition of CYP2C9 and other epoxygenases. These results support the putative mechanism of action of PPOH and MS-PPOH on recombinant P450s and (with one exception) confirm a general epoxygenase inhibitory profile for PPOH. However, the heterogeneity of inhibitory potencies for MS-PPOH on these enzymes suggests caution in the use of this drug as a general epoxygenase inhibitor. These results will facilitate the judicious use of PPOH and MS-PPOH for epoxygenase research.


Assuntos
Acetileno/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Animais , Humanos , Concentração Inibidora 50 , NADP/metabolismo , Ratos , Proteínas Recombinantes/antagonistas & inibidores
15.
Pain ; 152(4): 878-887, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21316152

RESUMO

The search for the mechanism of action of improgan (a nonopioid analgesic) led to the recent discovery of CC12, a compound that blocks improgan antinociception. Because CC12 is a cytochrome P450 inhibitor, and brain P450 mechanisms were recently shown to be required in opioid analgesic signaling, pharmacological and transgenic studies were performed in rodents to test the hypothesis that improgan antinociception requires brain P450 epoxygenase activity. Intracerebroventricular (i.c.v.) administration of the P450 inhibitors miconazole and fluconazole, and the arachidonic acid (AA) epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) potently inhibited improgan antinociception in rats at doses that were inactive alone. MW06-25, a new P450 inhibitor that combines chemical features of CC12 and miconazole, also potently blocked improgan antinociception. Although miconazole and CC12 were weakly active at opioid and histamine H(3) receptors, MW06-25 showed no activity at these sites, yet retained potent P450-inhibiting properties. The P450 hypothesis was also tested in Cpr(low) mice, a viable knock-in model with dramatically reduced brain P450 activity. Improgan (145 nmol, i.c.v.) antinociception was reduced by 37% to 59% in Cpr(low) mice, as compared with control mice. Moreover, CC12 pretreatment (200 nmol, i.c.v.) abolished improgan action (70% to 91%) in control mice, but had no significant effect in Cpr(low) mice. Thus, improgan's activation of bulbospinal nonopioid analgesic circuits requires brain P450 epoxygenase activity. A model is proposed in which (1) improgan activates an unknown receptor to trigger downstream P450 activity, and (2) brainstem epoxygenase activity is a point of convergence for opioid and nonopioid analgesic signaling.


Assuntos
Analgésicos não Narcóticos/farmacologia , Encéfalo/efeitos dos fármacos , Cimetidina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/farmacologia , Amidas/farmacologia , Analgésicos Opioides/farmacocinética , Animais , Encéfalo/metabolismo , Linhagem Celular Transformada , Cimetidina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Injeções Intraventriculares/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miconazol/farmacologia , NADPH-Ferri-Hemoproteína Redutase/deficiência , Naltrexona/análogos & derivados , Naltrexona/farmacocinética , Antagonistas de Entorpecentes/farmacocinética , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptores Histamínicos H3/metabolismo , Sulfetos/farmacologia , Fatores de Tempo , Trítio/farmacocinética
16.
J Pharmacol Exp Ther ; 336(1): 30-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864501

RESUMO

Histamine H(3) receptors (H(3)Rs), distributed within the brain, the spinal cord, and on specific types of primary sensory neurons, can modulate pain transmission by several mechanisms. In the skin, H(3)Rs are found on certain Aß fibers, and on keratinocytes and Merkel cells, as well as on deep dermal, peptidergic Aδ fibers terminating on deep dermal blood vessels. Activation of H(3)Rs on the latter in the skin, heart, lung, and dura mater reduces calcitonin gene-related peptide and substance P release, leading to anti-inflammatory (but not antinociceptive) actions. However, activation of H(3)Rs on the spinal terminals of these sensory fibers reduces nociceptive responding to low-intensity mechanical stimuli and inflammatory stimuli such as formalin. These findings suggest that H(3)R agonists might be useful analgesics, but these drugs have not been tested in clinically relevant pain models. Paradoxically, H(3) antagonists/inverse agonists have also been reported to attenuate several types of pain responses, including phase II responses to formalin. In the periaqueductal gray (an important pain regulatory center), the H(3) inverse agonist thioperamide releases neuronal histamine and mimics histamine's biphasic modulatory effects in thermal nociceptive tests. Newer H(3) inverse agonists with potent, selective, and brain-penetrating properties show efficacy in several neuropathic and arthritis pain models, but the sites and mechanisms for these actions remain poorly understood.


Assuntos
Encéfalo/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Receptores Histamínicos H3/fisiologia , Medula Espinal/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Medula Espinal/efeitos dos fármacos
17.
J Neurophysiol ; 104(6): 3222-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926616

RESUMO

Many analgesic drugs, including µ-opioids, cannabinoids, and the novel nonopioid analgesic improgan, produce antinociception by actions in the rostral ventromedial medulla (RVM). There they activate pain-inhibiting neurons, termed "OFF-cells," defined by a nociceptive reflex-related pause in activity. Based on recent functional evidence that neuronal P450 epoxygenases are important for the central antinociceptive actions of morphine and improgan, we explored the convergence of opioid and nonopioid analgesic drug actions in RVM by studying the effects of the P450 epoxygenase inhibitor CC12 on the analgesic drug-induced activation of these OFF-cells and on behavioral antinociception. In rats lightly anesthetized with isoflurane, we recorded the effects of intraventricular morphine and improgan, with and without CC12 pretreatment, on tail flick latency and activity of identified RVM neurons: OFF-cells, ON-cells (pronociceptive neurons), and neutral cells (unresponsive to analgesic drugs). CC12 pretreatment preserved reflex-related changes in OFF-cell firing and blocked the analgesic actions of both drugs, without interfering with the increase in spontaneous firing induced by improgan or morphine. CC12 blocked suppression of evoked ON-cell firing by improgan, but not morphine. CC12 pretreatment had no effect by itself on RVM neurons or behavior. These data show that the epoxygenase inhibitor CC12 works downstream from receptors for both µ-opioid and improgan, at the inhibitory input mediating the OFF-cell pause. This circuit-level analysis thus provides a cellular basis for the convergence of opioid and nonopioid analgesic actions in the RVM. A presynaptic P450 epoxygenase may therefore be an important target for development of clinically useful nonopioid analgesic drugs.


Assuntos
Analgésicos/antagonistas & inibidores , Cimetidina/análogos & derivados , Imidazóis/farmacologia , Bulbo/efeitos dos fármacos , Morfina/antagonistas & inibidores , Percepção da Dor/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Sulfetos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cimetidina/antagonistas & inibidores , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Masculino , Bulbo/citologia , Bulbo/fisiologia , Modelos Neurológicos , Percepção da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptores Opioides mu/fisiologia , Receptores Pré-Sinápticos/efeitos dos fármacos , Receptores Pré-Sinápticos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
18.
Eur J Pharmacol ; 632(1-3): 33-8, 2010 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-20138862

RESUMO

[(3)H]cimetidine, a radiolabeled histamine H(2) receptor antagonist, binds with high affinity to an unknown hemoprotein in the brain which is not the histamine H(2) receptor. Improgan, a close chemical congener of cimetidine, is a highly effective pain-relieving drug following CNS administration, yet its mechanism of action remains unknown. To test the hypothesis that the [(3)H]cimetidine-binding site is the improgan antinociceptive target, improgan, cimetidine, and 8 other chemical congeners were studied as potential inhibitors of [(3)H]cimetidine binding in membrane fractions from the rat brain. All compounds produced a concentration-dependent inhibition of [(3)H]cimetidine binding over a 500-fold range of potencies (K(i) values were 14.5 to >8000nM). However, antinociceptive potencies in rats did not significantly correlate with [(3)H]cimetidine-binding affinities (r=0.018, p=0.97, n=10). These results suggest that the [(3)H]cimetidine-binding site is not the analgesic target for improgan-like drugs.


Assuntos
Analgésicos/farmacologia , Encéfalo/metabolismo , Cimetidina/análogos & derivados , Cimetidina/antagonistas & inibidores , Analgésicos/química , Animais , Sítios de Ligação , Cimetidina/química , Cimetidina/farmacologia , Relação Dose-Resposta a Droga , Histamina/metabolismo , Antagonistas dos Receptores H2 da Histamina/metabolismo , Masculino , Estrutura Molecular , Dor/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Nat Neurosci ; 13(3): 284-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139973

RESUMO

To assess the importance of brain cytochrome P450 (P450) activity in mu opioid analgesic action, we generated a mutant mouse with brain neuron-specific reductions in P450 activity; these mice showed highly attenuated morphine antinociception compared with controls. Pharmacological inhibition of brain P450 arachidonate epoxygenases also blocked morphine antinociception in mice and rats. Our findings indicate that a neuronal P450 epoxygenase mediates the pain-relieving properties of morphine.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Dor/tratamento farmacológico , Receptores Opioides mu/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Morfina/administração & dosagem , Morfina/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/enzimologia , Vias Neurais/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Dor/enzimologia , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
20.
Bioorg Med Chem Lett ; 19(18): 5452-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19666223

RESUMO

A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.


Assuntos
Antimaláricos/farmacologia , DNA de Protozoário/análise , Citometria de Fluxo/métodos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , RNA de Protozoário/análise , Animais , Antimaláricos/química , Descoberta de Drogas , Resistência a Medicamentos , Eritrócitos/parasitologia , Citometria de Fluxo/economia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA