Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191663

RESUMO

The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37047877

RESUMO

This study analyzed the salivary proteomics, adiponectin and albumin, related to weight loss and periodontitis in patients undergoing bariatric surgery. This study included fourteen patients with morbid obesity (body mass index, BMI > 40 kg/m2) who underwent bariatric surgery Roux-en-Y gastric bypass (RYGB) in System Health Public in Brazil. Data on demographic and anthropometric measures were extracted from medical records preoperatively and 6 and 12 months post-surgery. The variables assessed were: probing pocket depth (PPD), clinical attachment loss (CAL), bleeding on probing (BOP), and stimulated whole-mouth saliva. In this study, saliva samples were analyzed by electrophoresis and immunoblotting. The ELISA kit was used to measure the MMP8 levels to determine potential markers for obesity. Adiponectin and albumin levels were also evaluated. Weight loss was associated with significant changes in patients' periodontal clinical data. Although 7 out of 10 periodontal patients showed an increase in salivary adiponectin levels after root planning treatment, when analyzed by Western blotting, the increase was not statistically significant (21.1 ± 4.8 to 26.3 ± 9.4 arbitrary units, p > 0.99). There was no correlation between albumin levels and salivary adiponectin pre-surgery, nor 6 months or 12 months after surgery. Weight loss was not improved by low-grade inflammation in bariatric patients, since albumin levels were similar between periods. Periodontitis is an inflammatory disease that is modulated by several factors, among which adiponectin plays an important role for the treatment of periodontal disease.


Assuntos
Cirurgia Bariátrica , Doenças da Gengiva , Obesidade Mórbida , Humanos , Estudos de Coortes , Adiponectina , Obesidade Mórbida/cirurgia , Redução de Peso , Albuminas
3.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920342

RESUMO

Secreted proteins fulfill a vast array of functions, including immunity, signaling, and extracellular matrix remodeling. In the trans-Golgi network, proteins destined for constitutive secretion are sorted into post-Golgi carriers which fuse with the plasma membrane. The molecular machinery involved is poorly understood. Here, we have used kinetic trafficking assays and transient CRISPR-KO to study biosynthetic sorting from the Golgi to the plasma membrane. Depletion of all canonical exocyst subunits causes cargo accumulation in post-Golgi carriers. Exocyst subunits are recruited to and co-localize with carriers. Exocyst abrogation followed by kinetic trafficking assays of soluble cargoes results in intracellular cargo accumulation. Unbiased secretomics reveals impairment of soluble protein secretion after exocyst subunit knockout. Importantly, in specialized cell types, the loss of exocyst prevents constitutive secretion of antibodies in lymphocytes and of leptin in adipocytes. These data identify exocyst as the functional tether of secretory post-Golgi carriers at the plasma membrane and an essential component of the mammalian constitutive secretory pathway.


Assuntos
Exocitose , Via Secretória , Animais , Transporte Proteico , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Proteínas/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
4.
Sci Rep ; 13(1): 677, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635354

RESUMO

Orthodontic tooth movement (OTM) occurs through proteolytic remodelling within the periodontium following the application of external force to the tooth. This study describes the first characterization of the salivary peptidome and protease profile during the alignment stage of fixed appliance orthodontic treatment. Unstimulated whole mouth saliva from 16 orthodontic patients (10 males, 6 females, mean (SD) age 15.2 (1.6) years) was collected prior to fixed appliance placement (T1), 1-h (T2), 1-week (T3) following fixed appliance placement and on completion of mandibular arch alignment (T4). Salivary peptides were extracted using filtration followed by mass spectrometry to identify amino acid sequences. Protease prediction was carried out in silico using Proteasix and validated with gelatin zymography and enzyme-linked immunosorbent assay. A total of 2852 naturally-occurring peptides were detected, originating from 436 different proteins. Both collagen and statherin-derived peptide levels were increased at T2. Proteasix predicted 73 proteases potentially involved in generating these peptides, including metalloproteinases, calpains and cathepsins. Changes in predicted activity of proteases over time were also observed, with most metalloproteinases showing increased predicted activity at T2-T3. Increased gelatinolytic activity and MMP8/MMP9 levels were detected at T3. Collectively, multiple protein targets and changes in protease-predicted activity during OTM have been identified.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Técnicas de Movimentação Dentária , Adolescente , Feminino , Humanos , Masculino , Endopeptidases/metabolismo , Boca/metabolismo , Aparelhos Ortodônticos Fixos , Peptídeo Hidrolases/metabolismo , Saliva/metabolismo
5.
Blood ; 141(14): 1737-1754, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36577137

RESUMO

HOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo. Integrated genomic, transcriptomic, and proteomic analyses further demonstrated that the HOXA9-SAFB (H9SB)-chromatin complex associates with nucleosome remodeling and histone deacetylase (NuRD) and HP1γ to repress the expression of factors associated with differentiation and apoptosis, including NOTCH1, CEBPδ, S100A8, and CDKN1A. Chemical or genetic perturbation of NuRD and HP1γ-associated catalytic activity also triggered differentiation, apoptosis, and the induction of these tumor-suppressive genes. Importantly, this mechanism is operative in other HOXA9-dependent AML genotypes. This mechanistic insight demonstrates the active HOXA9-dependent differentiation block as a potent mechanism of disease maintenance in AML that may be amenable to therapeutic intervention by targeting the H9SB interface and/or NuRD and HP1γ activity.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Transcrição/genética , Proteínas Associadas à Matriz Nuclear , Cromatina , Receptores de Estrogênio/genética , Receptores de Estrogênio/uso terapêutico , Proteínas de Ligação à Região de Interação com a Matriz/genética
6.
Cell Chem Biol ; 29(7): 1232-1244.e5, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868236

RESUMO

During metabolism, carboxylic acids are often activated by conjugation to the thiol of coenzyme A (CoA). The resulting acyl-CoAs comprise a group of ∼100 thioester-containing metabolites that could modify protein behavior through non-enzymatic N-acylation of lysine residues. However, the importance of many potential acyl modifications remains unclear because antibody-based methods to detect them are unavailable and the in vivo concentrations of their respective acyl-CoAs are poorly characterized. Here, we develop cysteine-triphenylphosphonium (CysTPP), a mass spectrometry probe that uses "native chemical ligation" to sensitively detect the major acyl-CoAs present in vivo through irreversible modification of its amine via a thioester intermediate. Using CysTPP, we show that longer-chain (C13-C22) acyl-CoAs often constitute ∼60% of the acyl-CoA pool in rat tissues. These hydrophobic longer-chain fatty acyl-CoAs have the potential to non-enzymatically modify protein residues.


Assuntos
Acil Coenzima A , Coenzima A , Acil Coenzima A/metabolismo , Acilação , Animais , Coenzima A/metabolismo , Cisteína/metabolismo , Espectrometria de Massas , Proteínas/metabolismo , Ratos
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105802

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Proteínas Nucleares/imunologia , Proteólise , Proteínas do Envelope Viral/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Humanos , Proteínas Nucleares/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/imunologia , Proteínas do Envelope Viral/genética
8.
Front Immunol ; 12: 600056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628210

RESUMO

The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells. Here, we use multiplexed proteomics to quantify IFNα2a-stimulated PM protein changes in primary human CD14+ monocytes and CD4+ T cells from five donors, quantifying 606 and 482 PM proteins respectively. Comparison of cell surface proteomes revealed a remarkable invariance between donors in the overall composition of the cell surface from each cell type, but a marked donor-to-donor variability in the effects of IFNα2a. Furthermore, whereas only 2.7% of quantified proteins were consistently upregulated by IFNα2a at the surface of CD4+ T cells, 6.8% of proteins were consistently upregulated in primary monocytes, suggesting that the magnitude of the IFNα2a response varies according to cell type. Among these differentially regulated proteins, we found the viral target Endothelin-converting enzyme 1 (ECE1) to be an IFNα2a-stimulated protein exclusively upregulated at the surface of CD4+ T cells. We therefore provide a comprehensive map of the cell surface of IFNα2a-stimulated primary human immune cells, including previously uncharacterized interferon stimulated genes (ISGs) and candidate antiviral factors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Enzimas Conversoras de Endotelina/imunologia , Interferon-alfa/farmacologia , Monócitos/imunologia , Linfócitos T CD4-Positivos/citologia , Humanos , Monócitos/citologia , Proteômica
9.
Sci Rep ; 10(1): 20254, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219268

RESUMO

Acyl-CoAs are reactive metabolites that can non-enzymatically S-acylate and N-acylate protein cysteine and lysine residues, respectively. N-acylation is irreversible and enhanced if a nearby cysteine residue undergoes an initial reversible S-acylation, as proximity leads to rapid S → N-transfer of the acyl moiety. We reasoned that protein-bound acyl-CoA could also facilitate S → N-transfer of acyl groups to proximal lysine residues. Furthermore, as CoA contains an ADP backbone this may extend beyond CoA-binding sites and include abundant Rossmann-fold motifs that bind the ADP moiety of NADH, NADPH, FADH and ATP. Here, we show that excess nucleotides decrease protein lysine N-acetylation in vitro. Furthermore, by generating modelled structures of proteins N-acetylated in mouse liver, we show that proximity to a nucleotide-binding site increases the risk of N-acetylation and identify where nucleotide binding could enhance N-acylation in vivo. Finally, using glutamate dehydrogenase as a case study, we observe increased in vitro lysine N-malonylation by malonyl-CoA near nucleotide-binding sites which overlaps with in vivo N-acetylation and N-succinylation. Furthermore, excess NADPH, GTP and ADP greatly diminish N-malonylation near their nucleotide-binding sites, but not at distant lysine residues. Thus, lysine N-acylation by acyl-CoAs is enhanced by nucleotide-binding sites and may contribute to higher stoichiometry protein N-acylation in vivo.


Assuntos
Lisina/metabolismo , Nucleotídeos/metabolismo , Acetilação , Acilação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Flavina-Adenina Dinucleotídeo/metabolismo , NAD/metabolismo
10.
Nat Commun ; 11(1): 4046, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792488

RESUMO

2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc)-the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 associates with the OGDHc and maintains catalytic activity of lipoyl domain by preventing the formation of lipoyl adducts, highlighting ABHD11 as a regulator of functional lipoylation and 2-OG metabolism.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mitocôndrias/metabolismo , Mutagênese/fisiologia , Serina Proteases/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Células HeLa , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Modelos Biológicos , Mutagênese/genética , Serina Proteases/genética
11.
Mol Cell Proteomics ; 19(10): 1664-1676, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651226

RESUMO

Natural compounds that can stimulate salivary secretion are of interest in developing treatments for xerostomia, the perception of a dry mouth, that affects between 10 and 30% of the adult and elderly population. Chemesthetic transient receptor potential (TRP) channels are expressed in the surface of the oral mucosa. The TRPV1 agonists capsaicin and piperine have been shown to increase salivary flow when introduced into the oral cavity but the sialogogic properties of other TRP channel agonists have not been investigated. In this study we have determined the influence of different TRP channel agonists on the flow and protein composition of saliva. Mouth rinsing with the TRPV1 agonist nonivamide or menthol, a TRPM8 agonist, increased whole mouth saliva (WMS) flow and total protein secretion compared with unstimulated saliva, the vehicle control mouth rinse or cinnamaldehyde, a TRPA1 agonist. Nonivamide also increased the flow of labial minor gland saliva but parotid saliva flow rate was not increased. The influence of TRP channel agonists on the composition and function of the salivary proteome was investigated using a multi-batch quantitative MS method novel to salivary proteomics. Inter-personal and inter-mouth rinse variation was observed in the secreted proteomes and, using a novel bioinformatics method, inter-day variation was identified with some of the mouth rinses. Significant changes in specific salivary proteins were identified after all mouth rinses. In the case of nonivamide, these changes were attributed to functional shifts in the WMS secreted, primarily the over representation of salivary and nonsalivary cystatins which was confirmed by immunoassay. This study provides new evidence of the impact of TRP channel agonists on the salivary proteome and the stimulation of salivary secretion by a TRPM8 channel agonist, which suggests that TRP channel agonists are potential candidates for developing treatments for sufferers of xerostomia.


Assuntos
Proteoma/metabolismo , Saliva/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Adulto , Humanos , Proteômica , Reprodutibilidade dos Testes , Cistatinas Salivares/metabolismo , Salivação , Adulto Jovem
12.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391791

RESUMO

Herpesviruses acquire their membrane envelopes in the cytoplasm of infected cells via a molecular mechanism that remains unclear. Herpes simplex virus (HSV)-1 proteins pUL7 and pUL51 form a complex required for efficient virus envelopment. We show that interaction between homologues of pUL7 and pUL51 is conserved across human herpesviruses, as is their association with trans-Golgi membranes. We characterized the HSV-1 pUL7:pUL51 complex by solution scattering and chemical crosslinking, revealing a 1:2 complex that can form higher-order oligomers in solution, and we solved the crystal structure of the core pUL7:pUL51 heterodimer. While pUL7 adopts a previously-unseen compact fold, the helix-turn-helix conformation of pUL51 resembles the cellular endosomal complex required for transport (ESCRT)-III component CHMP4B and pUL51 forms ESCRT-III-like filaments, suggesting a direct role for pUL51 in promoting membrane scission during virus assembly. Our results provide a structural framework for understanding the role of the conserved pUL7:pUL51 complex in herpesvirus assembly.


Most people suffer from occasional cold sores, which are caused by the herpes simplex virus. This virus causes infections that last your entire life, but for the most part it lies dormant in your cells and reactivates only at times of stress. When it reactivates, the virus manipulates host cells to make new virus particles that may spread the infection to other people. Like many other viruses, herpes simplex viruses also steal jelly-like structures known as membranes from their host cells to form protective coats around new virus particles. In cells from humans and other animals, proteins belonging to a molecular machine known as ESCRT form filaments that bend and break membranes as the cells require. Many viruses hijack the ESCRT machinery to wrap membranes around new virus particles. However, herpes simplex viruses do not follow the usual rules for activating this machine. Instead, they rely on two viral proteins called pUL7 and pUL51 to hot-wire the ESCRT machinery. Previous studies have shown that these two proteins bind to each other, but it remained unclear how they work. Butt et al. used a combination of biochemical and biophysical techniques to solve the three-dimensional structures of pUL7 and pUL51 when bound to each other. The experiments determined that the structure of pUL51 resembles the structures of different components in the ESCRT machinery. Like the ESCRT proteins, pUL51 formed filaments, suggesting that pUL51 bends membranes in cells and that pUL7 blocks it from doing so until the time is right. Further experiments showed that the equivalents of pUL7 and pUL51 in other members of the herpes virus family also bind to each other in a similar way. These findings reveal that herpes simplex viruses and their close relatives have evolved a different strategy than many other viruses to steal membranes from host cells. Interfering with this mechanism may provide new avenues for designing drugs or improving vaccines against these viruses. The pUL7 and pUL51 proteins may also inspire new tools in biotechnology that could precisely control the shapes of biological membranes.


Assuntos
Herpesvirus Humano 1/fisiologia , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Montagem de Vírus , Células HEK293 , Células HeLa , Herpes Simples/virologia , Herpesvirus Humano 1/química , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo , Replicação Viral , Rede trans-Golgi
13.
Sci Rep ; 10(1): 4560, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165698

RESUMO

Monocytes are a critical component of the cellular innate immune system, and can be subdivided into classical, intermediate and non-classical subsets on the basis of surface CD14 and CD16 expression. Classical monocytes play the canonical role of phagocytosis, and account for the majority of circulating cells. Intermediate and non-classical cells are known to exhibit varying levels of phagocytosis and cytokine secretion, and are differentially expanded in certain pathological states. Characterisation of cell surface proteins expressed by each subset is informative not only to improve understanding of phenotype, but may also provide biological insights into function. Here we use highly multiplexed Tandem-Mass-Tag (TMT)-based mass spectrometry with selective cell surface biotinylation to characterise the classical monocyte surface proteome, then interrogate the phenotypic differences between each monocyte subset to identify novel protein markers.


Assuntos
Biomarcadores/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteômica/métodos , Cromatografia Líquida , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imunidade Celular , Espectrometria de Massas , Fenótipo
14.
Caries Res ; 54(3): 226-233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31962317

RESUMO

OBJECTIVES: The aim of this study was to investigate variations in the interaction between enamel, that is, the acquired enamel pellicle (AEP) and citric or hydrochloric acid. MATERIALS AND METHODS: A 24-h AEP was formed on natural enamel specimens (n = 40) from pooled whole mouth human saliva. Samples were randomly allocated to citric (0.3%, pH 3.2) or hydrochloric (HCl) acid (0.01 M, pH 2.38) exposure for 30 or 300 s. The total protein concentration (TPC), and phosphorous and calcium concentrations of the pellicle were determined before and after acid exposure, and again after re-immersion in saliva. Surface roughness and tandem scanning confocal microscopy imaging were used to assess enamel changes. RESULTS: After 300 s of citric acid exposure, the mean ± SD TPC reduced from 5.1 ± 1.1 to 3.5 ± 1.1 mg/mL (p < 0.05). In contrast, after 300 s of HCl exposure, the mean TPC did not reduce significantly from baseline (6.6 ± 1.1 to 5.7 ± 0.7 mg/mL) but was significantly reduced in the reformed pellicle to 4.9 ± 1.2 mg/mL (p < 0.001). This reduction occurred after significant release of calcium and phosphorous from the enamel surface (p < 0.001). Thirty seconds of exposure to either acid had no obvious effect on the AEP. The surface roughness of the enamel decreased after acid exposure but no differences between groups was observed. CONCLUSIONS: These findings indicate that citric acid interacted with proteins in the AEP upon contact, offering enamel protection. In contrast, HCl appeared to bypass the pellicle, and reduced protein was observed only after changes in the enamel chemical composition.


Assuntos
Película Dentária , Esmalte Dentário , Humanos , Ácido Clorídrico/efeitos adversos , Saliva , Erosão Dentária/induzido quimicamente
15.
Kidney360 ; 1(6): 447-457, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35368589

RESUMO

Background: Mannose-binding lectin (MBL) is an important component of innate immune defense. MBL undergoes oligomerization to generate high mol weight (HMW) forms which act as pattern recognition molecules to detect and opsonize various microorganisms. Several post-translational modifications including prolyl hydroxylation are known to affect the oligomerization of MBL. Yet, the enzyme(s) which hydroxylate proline in the collagen-like domain residues have not been identified and the significance of prolyl hydroxylation is incompletely understood. Methods: To investigate post-translational modifications of MBL, we stably expressed Myc-DDK tagged MBL in HEK293S cells. We used pharmacologic and genetic inhibition of 2-oxoglutarate-dependent dioxygenases (2OGDD) to identify the enzyme required for prolyl hydroxylation of MBL. We performed mass spectrometry to determine the effects of various inhibitors on MBL modifications. Results: Secretion of HMW MBL was impaired by inhibitors of the superfamily of 2OGDD, and was dependent on prolyl-4-hydroxylase subunit α1. Roxadustat and vadadustat, but not molidustat, led to significant suppression of hydroxylation and secretion of HMW forms of MBL. Conclusions: These data suggest that prolyl hydroxylation in the collagen-like domain of MBL is mediated by collagen prolyl-4-hydroxylase. Reduced MBL activity is likely to be an off-target effect of some, but not all, prolyl hydroxylase domain (PHD) inhibitors. There may be advantages in selective PHD inhibitors that would not interfere with MBL production.


Assuntos
Inibidores de Prolil-Hidrolase , Colágeno , Prolina Dioxigenases do Fator Induzível por Hipóxia , Pró-Colágeno-Prolina Dioxigenase , Prolil Hidroxilases , Inibidores de Prolil-Hidrolase/química
16.
J Texture Stud ; 50(1): 71-74, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387878

RESUMO

The bitterness of vegetables is a leading reason why they are avoided by children and some adults. Bitterness is perceived via TAS2R receptors located on the tongue. In contrast, astringency is a mouthfeel rather than a taste, and is perceived as a dry, puckering sensation. To date few reports have suggested any interactions between the two processes even though they often occur simultaneously in many real foods. In this study, we have used Brussels sprouts as an exemplar bitter vegetable and examined the influence of a number of different interventions on perceived intensity. Subjects rated the intensity of Brussels sprouts before and after three interventions: gravy, red wine, and water. Only red wine caused a significant (p < .0001) decrease in VAS scale, from 5.5 to 3.5 on a 10-point labeled magnitude scale. The results suggest the astringency of the red wine affected the perception of bitter in the Brussels sprout. Some possible mechanisms are discussed. PRACTICAL APPLICATIONS: This report reveals a possible insight into how bitterness is perceived in humans. By using astringency to affect salivary proteins, we suggest they may play a role in the detection of bitterness. This may be by helping to transport bitterness compounds to the taste bud receptors or a separate mechanism. Potentially this also opens up new ways to block bitterness.


Assuntos
Adstringentes/química , Brassica/química , Aromatizantes/química , Vinho/análise , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G , Saliva/química , Proteínas e Peptídeos Salivares , Paladar , Verduras , Adulto Jovem
17.
J Texture Stud ; 48(4): 313-317, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28766746

RESUMO

The extensional rheology (ER) of saliva is a property associated with its ability to coat surfaces and is important for the maintenance of a normal mouth feeling. Transient receptor potential (TRP) channels are expressed in the oral cavity and this study investigated how the sensory effects of TRP channel agonists modify the ER of saliva. Healthy volunteers rinsed with solutions containing a TRP agonist. Unstimulated whole mouth saliva (WMS) was collected prior to rinsing and WMS was collected during the first and second minutes after the mouth rinse. The Spinnbarkeit of the collected saliva was measured using a Neva Meter. The nonivamide (TRPV1) mouth rinse increased WMS ER from 37.0 (± 6.3) mm to 49.3 (± 5.1) mm when compared with the vehicle control, which itself had no effect on WMS ER. However, this effect was short-lived and ER of WMS was not increased in the second minute after the nonivamide mouth rinse. The menthol (TRPM8) mouth rinse resulted in an increase up to 57.8 (± 7.8) mm in WMS ER from the vehicle control and returned to control levels in the second minute. The cinnamaldehyde (TRPA1) mouth rinse resulted in no change in WMS ER. It can be concluded that nonivamide and menthol mouth rinsing has a short-term effect of increasing WMS ER, an effect not observed after cinnamaldehyde rinsing. We hypothesize that the activation of some TRP channels in the oral cavity results in changes in the salivary protein composition that in turn alters WMS ER. PRACTICAL APPLICATIONS: Identifying compounds that modify the physical properties of saliva in a desirable way is important in developing treatments for conditions associated with changes in the physical properties of saliva such as xerostomia (also known as dry mouth). Furthermore, understanding the rheology of saliva contributes to the elucidation of food oral processing which is of importance to food manufacturers.


Assuntos
Acroleína/análogos & derivados , Capsaicina/análogos & derivados , Mentol/metabolismo , Reologia , Saliva/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Acroleína/metabolismo , Adulto , Capsaicina/metabolismo , Feminino , Aromatizantes/farmacologia , Voluntários Saudáveis , Humanos , Masculino , Boca/metabolismo , Antissépticos Bucais/metabolismo , Fármacos do Sistema Sensorial/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...