Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(14): 1876-1879, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38273815

RESUMO

Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm-1 under 100% CO2 and 65% Relative Humidity (RH).

2.
Soft Matter ; 19(43): 8386-8402, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873806

RESUMO

We describe a simple coordination compound of Au(I) and 6-thioguanosine, [Au(6-tGH)2]Cl, that has a rich self-assembly chemistry. In aqueous solution, the discrete complex assembles into a supramolecular fibre and forms a luminescent hydrogel at concentrations above about 1 mM. Below this concentration, the macromolecular structure is a vesicle. Through appropriate control of the solvent polarity, the gel can be turned into a lamellar film or crystallised. The molecular structure of [Au(6-tGH)2]Cl was determined using single crystal X-ray diffraction, which showed bis-6-thioguanosine linearly coordinated through the thione moiety to a central Au(I) ion. In the vesicles, the photoluminescence spectrum shows a broad, weak band at 550 nm owing to aurophilic interactions. Co-operative self-assembly from vesicle to fibre is made possible through halogen hydrogen bonding interactions and the aurophilic interactions are lost, resulting in a strong photoluminescence band at 490 nm with vibronic structure typical of an intraligand transition. The vesicle-fibre transition is also revealed by a large increase of ellipticity in the circular dichroism spectrum with a prominent peak near 390 nm owing to the helical structure of the fibres. Atomic force microscopy shows that at the same time as fibres form, the sample gels. Imaging near the vesicle-fibre transition shows that the fibres form between vesicles and a mechanism for the transition based on vesicle collisions is proposed.

3.
Dalton Trans ; 52(17): 5545-5551, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009664

RESUMO

An RNA-based coordination polymer is formed by the aqueous reaction of CuI ions with the thionucleoside enantiomer (-)6-thioguanosine, (6tGH). The resulting polymer, [CuI(µ3-S-thioG)]n1, has a one-dimensional structure based on a [Cu4-S4] core and undergoes extensive hierarchical self-assembly transforming from oligomeric chains → rod → cable → bundle through which a fibrous gel forms, that undergoes syneresis to form a self-supporting mass. The assembly involves the formation of helical cables/bundles and, in combination with the intrinsic photoemission of the polymer, results in the material exhibiting circularly polarised luminescence (CPL).

4.
J Mater Chem C Mater ; 10(18): 7329-7335, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35706420

RESUMO

The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.

5.
Nanotechnology ; 33(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34624883

RESUMO

Electronic sensors for volatile organic compounds have been prepared by drop-casting dispersions of multi-wall carbon nanotubes (MWCNTs) in aqueous solutions ofλ-DNA onto Pt microband electrodes. The MWCNTs themselves show a metal-like temperature dependence of the conductance, but the conductance of DNA/MWCNT composites has an activated component that corresponds to inter-tube tunneling. The resistance of the composite was modelled by a series combination of a term linear in temperature for the nanotubes and a stretched exponential form for the inter-tube junctions. The resistance may increase or decrease with temperature according to the composition and may be tuned to be almost temperature-independent at 67% by mass of DNA. Upon exposure to organic vapours, the resistance of the composites increases and the time-dependence of this signal is consistent with diffusion of the vapour into the composite. The fractional change in resistance at steady-state provides an analytical signal with a linear calibration and the presence of DNA enhances the signal and adjusts the selectivity in favour of polar analytes. The temperature dependence of the signal is determined by the enthalpy of adsorption of the analyte in the inter-tube junctions and may be satisfactorily modelled using the Langmuir isotherm. Temperature and pressure-dependent studies indicate that neither charge injection by oxidation/reduction of the analyte nor condensation of analyte on the device is responsible for the signal. We suggest that the origin of the sensing response is an adsorption of the analyte in the inter-tube regions that modulates the tunneling barriers. This suggests a general route to tuning the selectivity of MWCNT gas sensors using non-conductive polymers of varying chemical functionality.

6.
Chem Sci ; 11(24): 6222-6228, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953017

RESUMO

The bottom-up assembly of nanoelectronic devices from molecular building blocks is a target of widespread interest. Herein we demonstrate an in situ seeded growth approach to produce a nanowire-based electrical device. This exploits the chemisorption of block terpolymer-based seed fibres with a thiophene-functionalised corona onto metal electrodes as the initial step. We then use these surface-bound seeds to initiate the growth of well-defined one-dimensional fibre-like micelles via the seeded growth method known as "Living crystallisation-driven self-assembly'' and demonstrate that they are capable of spanning an interelectrode gap. Finally, a chemical oxidation step was used to transform the nanofibres into nanowires to generate a two-terminal device. This seeded growth approach of growing well-defined circuit elements provides a useful new design tool for bottom-up device fabrication.

7.
Inorg Chem ; 58(19): 13346-13352, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31525964

RESUMO

We have synthesized and structurally characterized examples of the well-known silver-mediated DNA base pair in its simplest possible form, as [AgI-bis-(N3-cytosine)]+. The compounds show differences such as variable coordination geometry, conformation with cisoid and transoid arrangements, and, in one case, intramolecular base pairing. Collectively, these compounds represent three of five permutations of linear/bent coordination geometry and cisoid/transoid arrangement of the cytosine ligands and contain the global minimum conformation as determined by DFT calculations: bent-transoid. Furthermore, these compounds show no argentophilic intercomplex interactions in the solid state, in marked contrast to alkylated and nucleoside analogues, and so do not form the supramolecular 1D "metallo-DNA" duplex observed in those cases but instead form hydrogen-bonded sheets. This marked difference may be attributed, in part, to the additional hydrogen bond donor site at N1 of the nucleobase that ubiquitously participates in intermolecular interactions.


Assuntos
Citosina/análogos & derivados , DNA/química , Prata/química , Pareamento de Bases , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico
8.
Chem Sci ; 10(11): 3186-3195, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30996900

RESUMO

The silver-nucleoside complex [Ag(i)-(N3-cytidine)2], 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA. A combination of complementary hydrogen-bonding, hydrophobic and argentophilic interactions drive the formation of a double-helix with a continuous silver core. Electrical measurements on 1 show that despite having Ag···Ag distances within <5% of the metallic radii, the material is electrically insulating. This is due to the electronic structure which features a filled valence band, an empty conduction band dominated by the ligand, and a band gap of 2.5 eV. Hence, as-prepared, such Ag(i)-DNA systems should not be considered molecular nanowires but, at best, proto-wires. The structural features seen in 1 are essentially retained in the corresponding organogel which exhibits thixotropic self-healing that can be attributed to the reversible nature of the intermolecular interactions. Photo-reduced samples of the gel exhibit luminescence confirming that these poly-cytidine sequences appropriately pre-configure silver ions for the formation of quantum-confined metal clusters in line with contemporary views on DNA-templated clusters. Microscopy data reveals the resulting metal cluster/particles are approximately spherical and crystalline with lattice spacing (111) similar to bulk Ag.

9.
Chembiochem ; 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29575493

RESUMO

The on-column selective conversion of guanosine to thioguanosine (tG) yields modified oligomers that exhibit destabilisation over the fully complementary duplex. Restoration to a stabilised duplex is induced through thio-directed Cd2+ coordination; a route for healing DNA damage. Short oligomers are G-specifically thiolated through a modified on-column protocol without the need for costly thioguanosine phosphoramidites. Addition of Cd2+ ions to a duplex containing a highly disrupted tG central mismatch sequence, 3'-A6 tG4 T6 -5', suggests a (tG)8 Cd2 central coordination regime, resulting in increased base stacking and duplex stability. Equilibrium molecular dynamic calculations support the hypothesis of metal-induced healing of the thiolated duplex. The 2 nm displacement of the central tG mismatched region is dramatically reduced after the addition of a chemical stimuli, Cd2+ ions, returning to a minimized fluctuational state comparable to the unmodified fully complementary oligomer.

10.
Biofouling ; 33(10): 892-903, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29083230

RESUMO

Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.


Assuntos
Betaína/análogos & derivados , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Metacrilatos/farmacologia , Polímeros/farmacologia , Betaína/química , Betaína/farmacologia , Diatomáceas/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Propriedades de Superfície
11.
Nat Commun ; 8(1): 720, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959026

RESUMO

Advances in bottom-up material design have been significantly progressed through DNA-based approaches. However, the routine integration of semiconducting properties, particularly long-range electrical conduction, into the basic topological motif of DNA remains challenging. Here, we demonstrate this with a coordination polymer derived from 6-thioguanosine (6-TG-H), a sulfur-containing analog of a natural nucleoside. The complexation reaction with Au(I) ions spontaneously assembles luminescent one-dimensional helical chains, characterized as {AuI(µ-6-TG)} n , extending many µm in length that are structurally analogous to natural DNA. Uniquely, for such a material, this gold-thiolate can be transformed into a wire-like conducting form by oxidative doping. We also show that this self-assembly reaction is compatible with a 6-TG-modified DNA duplex and provides a straightforward method by which to integrate semiconducting sequences, site-specifically, into the framework of DNA materials, transforming their properties in a fundamental and technologically useful manner.Integration of semiconducting properties into the basic topological motif of DNA remains challenging. Here, the authors show a coordination polymer derived from 6-thioguanosine that complexes with Au(I) ions to form a wire-like material that can also integrate semiconducting sequences into the framework of DNA materials.


Assuntos
DNA , Ouro , Guanosina/análogos & derivados , Nanofios , Polímeros , Semicondutores , Tionucleosídeos , Íons , Nanoestruturas
12.
Nanotechnology ; 28(4): 044001, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27981945

RESUMO

Poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) is an excellent block copolymer (BCP) system for self-assembly and inorganic template fabrication because of its high Flory-Huggins parameter (χ âˆ¼ 0.26) at room temperature in comparison to other BCPs, and high selective etch contrast between PS and PDMS block for nanopatterning. In this work, self-assembly in PS-b-PDMS BCP is achieved by combining hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH) brush surfaces with solvent vapor annealing. As an alternative to standard brush chemistry, we report a simple method based on the use of surfaces functionalized with silane-based self-assembled monolayers (SAMs). A solution-based approach to SAM formation was adopted in this investigation. The influence of the SAM-modified surfaces upon BCP films was compared with polymer brush-based surfaces. The cylinder forming PS-b-PDMS BCP and PDMS-OH polymer brush were synthesized by sequential living anionic polymerization. It was observed that silane SAMs provided the appropriate surface chemistry which, when combined with solvent annealing, led to microphase segregation in the BCP. It was also demonstrated that orientation of the PDMS cylinders may be controlled by judicious choice of the appropriate silane. The PDMS patterns were successfully used as an on-chip etch mask to transfer the BCP pattern to underlying silicon substrate with sub-25 nm silicon nanoscale features. This alternative SAM/BCP approach to nanopattern formation shows promising results, pertinent in the field of nanotechnology, and with much potential for application, such as in the fabrication of nanoimprint lithography stamps, nanofluidic devices or in narrow and multilevel interconnected lines.

13.
Science ; 353(6305): 1204-5, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634510

Assuntos
Nanotubos
14.
Inorg Chem ; 55(19): 9644-9652, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27631950

RESUMO

A series of new two-dimensional coordination framework materials, based on Ag(I)-N bond formation, has been synthesized and structurally characterized by single crystal methods. Reactions between the poly-monodentate bridging ligand N,N'-((1r,4r)-cyclohexane-1,4-diyl)bis(1-(pyridin-3-yl)methanimine), L1, and silver salts yield compounds {[Ag(L1)(MeCN)](CF3SO3-)}n, 1, {[Ag(L1)(PF2O2-)]·H2O}n, 2, and {Ag2(L1)(tosylate)2}n, 3. The frameworks of these materials exhibit two distinct net topologies: 36.46.53 (1 and 2) and 44.62 (3). In all cases, L1 ligands are found to be fully saturated, in terms of metal ion binding, with both sets of pyridyl and imino N atoms involved, though in 1 and 2, crystallographically independent L1 moieties also display pyridyl-only binding. Either solvent (1) or the anion (2 and 3) acts as a terminal ligand to support interlayer interactions in the solid state. For 2 and 3 the molecular sheet orientation lies in the plane of the largest crystal face, indicating that crystal growth is preferentially driven by coordinate bond formation. Despite the relatively labile nature, typical of such Ag(I)-N bonds, solvent-based exfoliation of crystals of 3 was shown to provide dispersions of large, µm2, flakes which readily deposit on oxide surfaces as single-molecule sheets, as revealed by atomic force microscopy.

15.
Nanotechnology ; 27(9): 095704, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855053

RESUMO

A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

16.
J Am Chem Soc ; 136(18): 6649-55, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24712548

RESUMO

Details of the mechanism of formation of supramolecular polymer nanowires by templating on DNA are revealed for the first time using AFM. Overall these data reveal that the smooth, regular, structures produced are rendered by highly dynamic supramolecular transformations occurring over the micrometre scale. In the initial stages of the process a low density of conducting polymer (CP) binds to the DNA as, essentially, spherical particles. Further reaction time produces DNA strands which are more densely packed with particles giving a beads-on-a-string appearance. The particles subsequently undergo dynamic reconfiguration so as to elongate along the template axis and merge to yield the highly regular, smooth morphology of the final nanowire. MD simulations illustrate the early stages of the process showing the binding of globular CP to duplex DNA, while the latter stages can be modeled effectively by a linear thermodynamic description based on the balance between the line energy, which accounts for adhesion of the material to the template, and its surface tension. This model accounts for the phenomena observed in the AFM studies: the relative success of DNA templating of polymers compared to metals; the slow approach to equilibrium; and the observed thinning and 'necking' phenomena as the structures transform from beads-on-a-string to smooth nanowire.


Assuntos
DNA/química , Nanofios , Polímeros/química , Termodinâmica
17.
Nanoscale ; 6(8): 4027-37, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24614835

RESUMO

DNA-templating has been used to create nanowires from metals, compound semiconductors and conductive polymers. The mechanism of growth involves nucleation at binding sites on the DNA followed by growth of spherical particles and then, under favourable conditions, a slow transformation to a smooth nanowire. The final transformation is favoured by restricting the amount of templated material per unit length of template and occurs most readily for materials of low surface tension. Electrical measurements on DNA-templated nanowires can be facilitated using three techniques: (i) standard current-voltage measurements with contact electrodes embedded in a dielectric so that there is a minimal step height at the dielectric/electrode boundary across which nanowires may be aligned by molecular combing, (ii) the use of a dried droplet technique and conductive AFM to determine contact resistance by moving the tip along the length of an individual nanowire and (iii) non-contact assessment of conductivity by scanned conductance microscopy on Si/SiO2 substrates.


Assuntos
DNA/química , Nanofios/química , DNA/ultraestrutura , Condutividade Elétrica , Microscopia de Força Atômica/métodos , Nanofios/ultraestrutura
18.
Chemistry ; 19(39): 13030-9, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23934688

RESUMO

Stable colloidal dispersions of polyaniline (PAni) nanofibers with controlled lengths from about 200 nm-1.1 µm and narrow length distributions (Lw/Ln < 1.04; Lw = weight average micelle length, Ln = number average micelle length) were prepared through the template-directed synthesis of PAni using monodisperse, solution-self-assembled, cylindrical, block copolymer micelles as nanoscale templates. These micelles were prepared through a crystallization-driven living self-assembly method from a poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) block copolymer (PFS25 -b-P2VP425). This material was initially self-assembled in iPrOH to form cylindrical micelles with a crystalline PFS core and a P2VP corona and lengths of up to several micrometers. Sonication of this sample then yielded short cylinders with average lengths of 90 nm and a broad length distribution (Lw/Ln = 1.32). Cylindrical micelles of PFS25 -b-P2VP425 with controlled lengths and narrow length distributions (Lw/Ln < 1.04) were subsequently prepared using thermal treatment at specific temperatures between 83.5 and 92.0 °C using a 1D self-seeding process. These samples were then employed in the template-directed synthesis of PAni nanofibers through a two-step procedure, where the micellar template was initially stabilised by deposition of an oligoaniline coating followed by addition of a polymeric acid dopant, resulting in PAni nanofibers in the emeraldine salt (ES) state. The ES-PAni nanofibers were shown to be conductive by scanning conductance microscopy, whereas the precursor PFS25-b-P2VP425 micelle templates were found to be dielectric in character.

19.
Nanoscale ; 5(12): 5349-59, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23649009

RESUMO

The fabrication of electrically conducting magnetic nanowires has been achieved using electrochemical DNA-templating of iron. In this approach, binding of the Fe(2+) cations to the DNA "template" molecules has been utilised to promote growth along the molecular axis. Formation of Fe within the product material was verified by XRD and XPS studies, which confirmed an iron/oxide "core-shell" structure. The effectiveness of the DNA duplex to direct the metal growth in one dimension was highlighted by AFM which reveals the product material to comprise high aspect ratio nanostructured architectures. These "nanowires" were observed to have morphologies consisting of densely packed linear arrangements of metal particles along the template, with wire diameters up to 26 nm. The structures were confirmed to be electrically conductive, as expected for such Fe-based materials, and to display superparamagnetic behaviour, consistent with the small size and particulate nature of the nanowires.


Assuntos
DNA/química , Nanofios/química , Condutividade Elétrica , Técnicas Eletroquímicas , Compostos Ferrosos/química , Magnetismo , Oxirredução , Tamanho da Partícula
20.
Inorg Chem ; 52(9): 5290-9, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594219

RESUMO

In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Tioguanina/química , Condutividade Elétrica , Modelos Moleculares , Polímeros/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...