Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(4): 1315-1332, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064681

RESUMO

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.


Assuntos
Beta vulgaris , Ácido Abscísico/metabolismo , Beta vulgaris/genética , Germinação/fisiologia , Dormência de Plantas/genética , Sementes/fisiologia
2.
Planta ; 251(6): 105, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32417974

RESUMO

MAIN CONCLUSION: Storage at an elevated partial pressure of oxygen and classical artificial ageing cause a rapid loss of seed viability of short-lived vegetable seeds. Prolonging seed longevity during storage is of major importance for gene banks and the horticultural industry. Slowing down biochemical deterioration, including oxygen-dependent deterioration caused by oxidative processes can boost longevity. This can be affected by the seed structure and the oxygen permeability of seed coat layers. Classical artificial seed ageing assays are used to estimate seed 'shelf-life' by mimicking seed ageing via incubating seeds at elevated temperature and elevated relative humidity (causing elevated equilibrium seed moisture content). In this study, we show that seed lots of vegetable Allium species are short-lived both during dry storage for several months and in seed ageing assays at elevated seed moisture levels. Micromorphological analysis of the Allium cepa x Allium fistulosum salad onion seed identified intact seed coat and endosperm layers. Allium seeds equilibrated at 70% relative humidity were used to investigate seed ageing at tenfold elevated partial pressure of oxygen (high pO2) at room temperature (22 ºC) in comparison to classical artificial ageing at elevated temperature (42 ºC). Our results reveal that 30 days high pO2 treatment causes a rapid loss of seed viability which quantitatively corresponded to the seed viability loss observed by ~ 7 days classical artificial ageing. A similar number of normal seedlings develop from the germinating (viable) proportion of seeds in the population. Many long-lived seeds first exhibit a seed vigour loss, evident from a reduced germination speed, preceding the loss in seed viability. In contrast to this, seed ageing of our short-lived Allium vegetable seems to be characterised by a rapid loss in seed viability.


Assuntos
Allium/fisiologia , Oxigênio/química , Sementes/fisiologia , Germinação , Pressão Parcial , Plântula/fisiologia , Verduras
3.
Planta ; 250(5): 1717-1729, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414204

RESUMO

MAIN CONCLUSION: Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.


Assuntos
Ácido Abscísico/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Beta vulgaris/fisiologia , Bioquímica , Germinação , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Espectrometria de Massas em Tandem
4.
Nat Commun ; 8(1): 1868, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192192

RESUMO

The biomechanical and ecophysiological properties of plant seed/fruit structures are fundamental to survival in distinct environments. Dispersal of fruits with hard pericarps (fruit coats) encasing seeds has evolved many times independently within taxa that have seed dispersal as their default strategy. The mechanisms by which the constraint of a hard pericarp determines germination timing in response to the environment are currently unknown. Here, we show that the hard pericarp of Lepidium didymum controls germination solely by a biomechanical mechanism. Mechanical dormancy is conferred by preventing full phase-II water uptake of the encased non-dormant seed. The lignified endocarp has biomechanically and morphologically distinct regions that serve as predetermined breaking zones. This pericarp-imposed mechanical dormancy is released by the activity of common fungi, which weaken these zones by degrading non-lignified pericarp cells. We propose that the hard pericarp with this biomechanical mechanism contributed to the global distribution of this species in distinct environments.


Assuntos
Ascomicetos/fisiologia , Frutas/fisiologia , Lepidium/fisiologia , Dormência de Plantas/fisiologia , Sementes/fisiologia , Fenômenos Biomecânicos , Cladosporium/fisiologia , Código de Barras de DNA Taxonômico , Frutas/microbiologia , Fungos , Germinação , Lepidium/microbiologia , Micélio/fisiologia , Dispersão de Sementes , Sementes/microbiologia , Água
5.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100826

RESUMO

Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory.


Assuntos
Grão Comestível/química , Manipulação de Alimentos , Micro-Ondas , Estresse Mecânico , Triticum/química
6.
PLoS One ; 11(8): e0161904, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27571368

RESUMO

Belowground tri-trophic study systems present a challenging environment in which to study plant-herbivore-natural enemy interactions. For this reason, belowground examples are rarely available for testing general ecological theories. To redress this imbalance, we present, for the first time, data on a belowground tri-trophic system to test the slow growth, high mortality hypothesis. We investigated whether the differing performance of entomopathogenic nematodes (EPNs) in controlling the common pest black vine weevil Otiorhynchus sulcatus could be linked to differently resistant cultivars of the red raspberry Rubus idaeus. The O. sulcatus larvae recovered from R. idaeus plants showed significantly slower growth and higher mortality on the Glen Rosa cultivar, relative to the more commercially favored Glen Ample cultivar creating a convenient system for testing this hypothesis. Heterorhabditis megidis was found to be less effective at controlling O. sulcatus than Steinernema kraussei, but conformed to the hypothesis. However, S. kraussei maintained high levels of O. sulcatus mortality regardless of how larval growth was influenced by R. idaeus cultivar. We link this to direct effects that S. kraussei had on reducing O. sulcatus larval mass, indicating potential sub-lethal effects of S. kraussei, which the slow-growth, high-mortality hypothesis does not account for. Possible origins of these sub-lethal effects of EPN infection and how they may impact on a hypothesis designed and tested with aboveground predator and parasitoid systems are discussed.


Assuntos
Modelos Teóricos , Animais , Biomassa , Herbivoria/fisiologia , Rubus/fisiologia , Gorgulhos/fisiologia
7.
J Chem Ecol ; 42(4): 348-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27059329

RESUMO

Soil microbes present a novel and cost-effective method of increasing plant resistance to insect pests and thus create a sustainable opportunity to reduce current pesticide application. However, the use of microbes in integrated pest management programs is still in its infancy. This can be attributed primarily to the variations in microbial inoculum performance under laboratory and field conditions. Soil inoculants containing single, indigenous microbial species have shown promising results in increasing chemical defenses of plants against foliar feeding insects. Conversely, commercial inoculants containing multiple species tend to show no effects on herbivore infestation in the field. We present here a simple model that endeavours to explain how single and multiple species in microbial inoculants differentially govern insect population dynamics via changes in plant chemical profiles. We discuss further how this knowledge can be applied to manipulate soil microbial species and develop 'tailored' microbial inoculants that could be used in plant protection against antagonists.


Assuntos
Controle Biológico de Vetores/métodos , Microbiologia do Solo , Agricultura , Animais , Cadeia Alimentar , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...