Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(32): 13088-93, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22773813

RESUMO

Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations.


Assuntos
Bacillus thuringiensis/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Locomoção/fisiologia , Interações Microbianas/fisiologia , Bacillus thuringiensis/metabolismo , Fluoresceína-5-Isotiocianato , Proteínas de Fluorescência Verde , Cinética , Lisostafina/metabolismo , Microscopia de Fluorescência , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos , Fatores de Tempo , Imagem com Lapso de Tempo
2.
PLoS Biol ; 6(7): e167, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18613749

RESUMO

The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.


Assuntos
Adesinas de Escherichia coli/fisiologia , Aderência Bacteriana/fisiologia , Escherichia coli/fisiologia , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Citometria de Fluxo , Proteínas de Fluorescência Verde/análise , Cinética , Tamanho da Partícula , Propriedades de Superfície , Suspensões/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...