Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 22(1): e12576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37803496

RESUMO

The great oxidation event (GOE), ~2.4 billion years ago, caused fundamental changes to the chemistry of Earth's surface environments. However, the effect of these changes on the biosphere is unknown, due to a worldwide lack of well-preserved fossils from this time. Here, we investigate exceptionally preserved, large spherical aggregate (SA) microfossils permineralised in chert from the c. 2.4 Ga Turee Creek Group in Western Australia. Field and petrographic observations, Raman spectroscopic mapping, and in situ carbon isotopic analyses uncover insights into the morphology, habitat, reproduction and metabolism of this unusual form, whose distinctive, SA morphology has no known counterpart in the fossil record. Comparative analysis with microfossils from before the GOE reveals the large SA microfossils represent a step-up in cellular organisation. Morphological comparison to extant micro-organisms indicates the SAs have more in common with coenobial algae than coccoidal bacteria, emphasising the complexity of this microfossil form. The remarkable preservation here provides a unique window into the biosphere, revealing an increase in the complexity of life coinciding with the GOE.


Assuntos
Ecossistema , Fósseis , Bactérias , Isótopos de Carbono , Carbono
3.
J Geophys Res Planets ; 127(6): e2021JE007096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865672

RESUMO

Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.

4.
Proc Natl Acad Sci U S A ; 119(27): e2201139119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759667

RESUMO

The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 µg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 µg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 µg C/g was evolved as CO2 and CO (with estimated δ13C = -32.9‰ to -10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.

5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042808

RESUMO

Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (-137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than -70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.

6.
Life (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947905

RESUMO

Future manned space travel will require efficient recycling of nutrients from organic waste back into food production. Microbial systems are a low-energy, efficient means of nutrient recycling, but their use in a life support system requires predictability and reproducibility in community formation and reactor performance. To assess the reproducibility of microbial community formation in fixed-film reactors, we inoculated replicate anaerobic reactors from two methanogenic inocula: a lab-scale fixed-film, plug-flow anaerobic reactor and an acidic transitional fen. Reactors were operated under identical conditions, and we assessed reactor performance and used 16s rDNA amplicon sequencing to determine microbial community formation. Reactor microbial communities were dominated by similar groups, but differences in community membership persisted in reactors inoculated from different sources. Reactor performance overlapped, suggesting a convergence of both reactor communities and organic matter mineralization. The results of this study suggest an optimized microbial community could be preserved and used to start new, or restart failed, anaerobic reactors in a life support system with predictable reactor performance.

7.
Life (Basel) ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207658

RESUMO

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.

8.
Life (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072344

RESUMO

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.

9.
Bull Math Biol ; 83(7): 73, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008062

RESUMO

A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth's oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012, 2016, 2017, 2019) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made-particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry-and develop our theory in connection with these often deployed measurements.


Assuntos
Exobiologia , Conceitos Matemáticos
10.
Geosphere (Boulder) ; 16(6): 1508-1537, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304202

RESUMO

Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.

11.
Life (Basel) ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255232

RESUMO

Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth's surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this "corked" borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.

12.
ISME J ; 14(6): 1345-1358, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32066876

RESUMO

Numerous archaeal lineages are known to inhabit marine subsurface sediments, although their distributions, metabolic capacities, and interspecies interactions are still not well understood. Abundant and diverse archaea were recently reported in Costa Rica (CR) margin subseafloor sediments recovered during IODP Expedition 334. Here, we recover metagenome-assembled genomes (MAGs) of archaea from the CR margin and compare them to their relatives from shallower settings. We describe 31 MAGs of six different archaeal lineages (Lokiarchaeota, Thorarchaeota, Heimdallarchaeota, Bathyarcheota, Thermoplasmatales, and Hadesarchaea) and thoroughly analyze representative MAGs from the phyla Lokiarchaeota and Bathyarchaeota. Our analysis suggests the potential capability of Lokiarchaeota members to anaerobically degrade aliphatic and aromatic hydrocarbons. We show it is genetically possible and energetically feasible for Lokiarchaeota to degrade benzoate if they associate with organisms using nitrate, nitrite, and sulfite as electron acceptors, which suggests a possibility of syntrophic relationships between Lokiarchaeota and nitrite and sulfite reducing bacteria. The novel Bathyarchaeota lineage possesses an incomplete methanogenesis pathway lacking the methyl coenzyme M reductase complex and encodes a noncanonical acetogenic pathway potentially coupling methylotrophy to acetogenesis via the methyl branch of Wood-Ljungdahl pathway. These metabolic characteristics suggest the potential of this Bathyarchaeota lineage to be a transition between methanogenic and acetogenic Bathyarchaeota lineages. This work expands our knowledge about the metabolic functional repertoire of marine benthic archaea.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Costa Rica , Sedimentos Geológicos/química , Metagenoma , Filogenia
13.
Astrobiology ; 20(2): 269-291, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904989

RESUMO

Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.


Assuntos
Evolução Química , Exobiologia/métodos , Planetas Menores , Água/química , Oceanos e Mares
14.
Nat Commun ; 10(1): 2777, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239434

RESUMO

Extraterrestrial delivery of cyanide may have been crucial for the origin of life on Earth since cyanide is involved in the abiotic synthesis of numerous organic compounds found in extant life; however, little is known about the abundance and species of cyanide present in meteorites. Here, we report cyanide abundance in a set of CM chondrites ranging from 50 ± 1 to 2472 ± 38 nmol·g-1, which relates to the degree of aqueous alteration of the meteorite and indicates that parent body processing influenced cyanide abundance. Analysis of the Lewis Cliff 85311 meteorite shows that its releasable cyanide is primarily in the form of [FeII(CN)5(CO)]3- and [FeII(CN)4(CO)2]2-. Meteoritic delivery of iron cyanocarbonyl complexes to early Earth likely provided an important point source of free cyanide. Iron cyanocarbonyl complexes may have served as precursors to the unusual FeII(CN)(CO) moieties that form the catalytic centers of hydrogenases, which are thought to be among the earliest enzymes.

15.
Sci Rep ; 9(1): 9281, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243303

RESUMO

The ability to store information is believed to have been crucial for the origin and evolution of life; however, little is known about the genetic polymers relevant to abiogenesis. Nitrogen heterocycles (N-heterocycles) are plausible components of such polymers as they may have been readily available on early Earth and are the means by which the extant genetic macromolecules RNA and DNA store information. Here, we report the reactivity of numerous N-heterocycles in highly complex mixtures, which were generated using a Miller-Urey spark discharge apparatus with either a reducing or neutral atmosphere, to investigate how N-heterocycles are modified under plausible prebiotic conditions. High throughput mass spectrometry was used to identify N-heterocycle adducts. Additionally, tandem mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate reaction pathways for select reactions. Remarkably, we found that the majority of N-heterocycles, including the canonical nucleobases, gain short carbonyl side chains in our complex mixtures via a Strecker-like synthesis or Michael addition. These types of N-heterocycle adducts are subunits of the proposed RNA precursor, peptide nucleic acids (PNAs). The ease with which these carbonylated heterocycles form under both reducing and neutral atmospheres is suggestive that PNAs could be prebiotically feasible on early Earth.


Assuntos
Compostos Heterocíclicos/química , Nitrogênio/química , Precursores de Ácido Nucleico/química , Ácidos Nucleicos Peptídicos/química , Acetonitrilas/química , Catálise , Cianamida/química , DNA/química , Planeta Terra , Evolução Química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Origem da Vida , Polímeros/química , RNA/química
16.
Geobiology ; 17(2): 113-126, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30378757

RESUMO

Lenticular, and commonly flanged, microfossils in 3.0-3.4 Ga sedimentary deposits in Western Australia and South Africa are unusually large (20-80 µm across), robust, and widespread in space and time. To gain insight into the ecology of these organisms, we performed simulations of fluid dynamics of virtual cells mimicking lenticular forms of variable sizes, oblateness, flange presence, and flange thickness. Results demonstrate that (a) the flange reduces sedimentation velocity, (b) this flange function works more effectively in larger cells, and (c) modest oblateness lowers sedimentation rate. These observations support interpretations that the lenticular microbes were planktonic-a lifestyle that could have been advantageous in an early Earth harsh environment including violent volcanic activities, repeated asteroid impacts, and relatively high UV-radiation. Although the robustness of these organisms could have provided additional protection on the early Earth, this architecture may have impeded a planktonic lifestyle by increasing cell density. However, our data suggest that this disadvantage could have been compensated by enlargement of cell volume, which could have enhanced the ability of the flange to slow sedimentation rate, especially if coupled with vacuolation. The results of this simulation study may help to explain the unique morphology and unusually large size of these Archean microfossils.


Assuntos
Organismos Aquáticos/fisiologia , Planeta Terra , Fósseis , Plâncton/fisiologia , Sedimentos Geológicos , Hidrodinâmica , Características de História de Vida , África do Sul , Austrália Ocidental
17.
Extremophiles ; 23(1): 119-132, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30536130

RESUMO

Built systems such as water heaters can harbor extremophiles similar to those residing in natural hot springs, but the extent of colonization is not well understood. To address this, we conducted a survey of thermophilic microorganisms in household water heaters across the United States. Filter samples and inoculated cultures were collected by citizen-scientists from 101 homes. Draft genomes were assembled from cultured isolates and 16S rRNA genes were sequenced from filter samples. 28% of households harbored communities with unambiguous DNA signatures of thermophilic organisms, 36% of households provided viable inocula, and 21% of households had both. All of the recovered cultures as well as the community sequencing results revealed Thermus scotoductus to be the dominant thermophile in domestic water heaters, with a minority of water heaters also containing Meiothermus species and a few containing Aquificae. Sequence distance comparisons show that allopatric speciation does not appear to be a strong control on T. scotoductus distribution. Our results demonstrate that thermophilic organisms are widespread in hot tap water, and that Thermus scotoductus preferentially colonizes water heaters at the expense of local environmental Thermus strains.


Assuntos
Calefação/instrumentação , Microbiota , Thermus/isolamento & purificação , Microbiologia da Água , Água Potável/microbiologia , Filogeografia , RNA Ribossômico 16S/genética , Thermus/classificação , Thermus/genética
18.
Science ; 360(6393): 1093-1096, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880682

RESUMO

Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

19.
Life Sci Space Res (Amst) ; 15: 32-42, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29198312

RESUMO

Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design, and proposes recycling of nutrients back into foodstuffs via heterotrophic (including methanotrophic, acetotrophic, and thermophilic) microbial growth.


Assuntos
Bactérias Anaeróbias/metabolismo , Biomassa , Reciclagem , Voo Espacial , Bactérias Anaeróbias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Metabolismo dos Lipídeos , Lipídeos/análise , Methylococcus capsulatus/metabolismo , Proteínas/metabolismo , Eliminação de Resíduos Líquidos , Purificação da Água/métodos
20.
Orig Life Evol Biosph ; 47(1): 3-11, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27029792

RESUMO

On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.


Assuntos
5-Metilcitosina/análogos & derivados , Evolução Química , Pentoxil (Uracila)/análogos & derivados , Polimerização , Água/química , 5-Metilcitosina/química , Temperatura Alta , Origem da Vida , Pentoxil (Uracila)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...