Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22057, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086903

RESUMO

Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.


Assuntos
Músculo Masseter , Mialgia , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Inflamação , Adjuvante de Freund/efeitos adversos
2.
Sci Rep ; 13(1): 23062, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155190

RESUMO

Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.


Assuntos
Callithrix , Músculos Pterigoides , Animais , Músculos Pterigoides/inervação , Peptídeo Relacionado com Gene de Calcitonina , Músculos da Mastigação , Músculo Masseter/inervação
3.
Front Pain Res (Lausanne) ; 4: 1274811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028432

RESUMO

Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. Mpz has dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2+ fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with Ccr2, Cx3cr1, and Iba1 as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CPlo) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CPhi BAMs, while type 3 Mph is distinct. S100a8+ Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r, Ly6G, Ngp, Elane, and Mpo. Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.

4.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645736

RESUMO

Non-neuronal cells constitute 90-95% of sensory ganglia. These cells play critical roles in modulation of nociceptive signal transmissions by sensory neurons. Accordingly, the aim of this review-study was to identify, profile and summarize TG non-neuronal cell types in naïve male mice using published and our own data generated by single-cell RNA sequencing (scRNA-seq), flow cytometry (FC) and immunohistochemistry (IHC). TG contains 5 types of non-neuronal cells: glial, fibroblasts, smooth muscle, endothelial and immune cells. There is agreement among publications for glial, fibroblasts, smooth muscle and endothelial cells. Based on gene profiles, glial cells were classified as Schwann cells and satellite glial cells (SGC). Mpz had dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2 + fibroblasts located throughout TG were distinguished using gene profiles. TG smooth muscle and endothelial cells representing blood vessels were detected with well recognized markers. Our study split reported single TG immune cell group into 3 types of macrophages and 4 types of neutrophils. Macrophages were located among neuronal bodies and nerve fibers, and were sub-grouped by unique transcriptomic profiles and using Ccr2 , Cx3cr1 and Iba1 as markers. S100a8 + neutrophils were located in dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r , Ly6G, Ngp, Elane and Mpo . Overall, generated and summarized here dataset on non-neuronal TG cells could provide essential and fundamental information for studies on cell plasticity, interactomic network between neurons and non-neuronal cells and function during variety of pain conditions in the head and neck region.

5.
bioRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37131723

RESUMO

Biological processes linked to intramuscular inflammation during myogenous temporomandibular disorder (TMDM) are largely unknown. We mimicked this inflammation by intra-masseteric muscle (MM) injections of complete Freund’s adjuvant (CFA) or collagenase type 2 (Col), which emulates tissue damage. CFA triggered mechanical hypersensitivity at 1d post-injection was mainly linked to processes controlling chemotactic activity of monocytes and neutrophils. At 5d post-CFA, when hypersensitivity was resolved, there was minimal inflammation whereas tissue repair processes were pronounced. Low dose Col (0.2U) also produced acute orofacial hypersensitivity that was linked to tissue repair, but not inflammatory processes. High dose Col (10U) triggered prolonged orofacial hypersensitivity with inflammatory processes dominating at 1d post-injection. At pre-resolution time point (6d), tissue repair processes were underway and a significant increase in pro-inflammatory gene expressions compared to 1d post-injection were detected. RNA-seq and flow cytometry showed that immune processes in MM were linked to accumulation of macrophages, natural killer and natural killer T cells, dendritic cells and T-cells. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, orofacial hypersensitivity resolution was preceded with repairs of muscle cell and extracellular matrix, an elevation in immune system gene expression and accumulation of distinct immune cells in MM.

6.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36798270

RESUMO

Myogenous temporomandibular disorders (TMDM) is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), medial pterygoid (MPM) and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate - common marmosets. Sensory nerves are localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were predominantly innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and minimal (6-8%) in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD, trpV1 and CHRNA3, a silent nociceptive marker. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. Almost all A-fibers in MM expressed trkC, with some of them having trkB and parvalbumin. In contrast, a lesser number of TM and LPM nerves expressed trkC, and lacked trkB. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have distinct and different innervation patterns.

7.
Brain Behav Immun ; 101: 246-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065194

RESUMO

Pain development and resolution patterns in many diseases are sex-dependent. This study aimed to develop pain models with sex-dependent resolution trajectories, and identify factors linked to resolution of pain in females and males. Using different intra-plantar (i.pl.) treatment protocols with prolactin (PRL), we established models with distinct, sex-dependent patterns for development and resolution of pain. An acute PRL-evoked pain trajectory, in which hypersensitivity is fully resolved within 1 day, showed substantial transcriptional changes after pain-resolution in female and male hindpaws and in the dorsal root ganglia (DRG). This finding supports the notion that pain resolution is an active process. Prolonged treatment with PRL high dose (1 µg) evoked mechanical hypersensitivity that resolved within 5-7 days in mice of both sexes and exhibited a pro-inflammatory transcriptional response in the hindpaw, but not DRG, at the time point preceding resolution. Flow cytometry analysis linked pro-inflammatory responses in female hindpaws to macrophages/monocytes, especially CD11b+/CD64+/MHCII+ cell accumulation. Prolonged low dose PRL (0.1 µg) treatment caused non-resolving mechanical hypersensitivity only in females. This effect was independent of sensory neuronal PRLR and was associated with a lack of immune response in the hindpaw, although many genes underlying tissue damage were affected. We conclude that different i.pl. PRL treatment protocols generates distinct, sex-specific pain hypersensitivity resolution patterns. PRL-induced pain resolution is preceded by a pro-inflammatory macrophage/monocyte-associated response in the hindpaws of mice of both sexes. On the other hand, the absence of a peripheral inflammatory response creates a permissive condition for PRL-induced pain persistency in females.


Assuntos
Prolactina , Receptores da Prolactina , Animais , Feminino , Gânglios Espinais , Masculino , Camundongos , Dor , Prolactina/farmacologia , Receptores da Prolactina/genética , Células Receptoras Sensoriais
8.
Sci Rep ; 11(1): 17813, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497285

RESUMO

Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


Assuntos
Hormônio do Crescimento/metabolismo , Dor/metabolismo , Pró-Opiomelanocortina/metabolismo , Prolactina/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Transgênicos , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Gânglio Trigeminal/citologia
9.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34580157

RESUMO

Understanding masseter muscle (MM) innervation is critical for the study of cell-specific mechanisms of pain induced by temporomandibular disorder (TMDs) or after facial surgery. Here, we identified trigeminal (TG) sensory neuronal subtypes (MM TG neurons) innervating MM fibers, masseteric fascia, tendons, and adjusted tissues. A combination of patch clamp electrophysiology and immunohistochemistry (IHC) on TG neurons back-traced from reporter mouse MM found nine distinct subtypes of MM TG neurons. Of these neurons, 24% belonged to non-peptidergic IB-4+/TRPA1- or IB-4+/TRPA1+ groups, while two TRPV1+ small-sized neuronal groups were classified as peptidergic/CGRP+ One small-sized CGRP+ neuronal group had a unique electrophysiological profile and were recorded from Nav1.8- or trkC+ neurons. The remaining CGRP+ neurons were medium-sized, could be divided into Nav1.8-/trkC- and Nav1.8low/trkC+ clusters, and showed large 5HT-induced current. The final two MM TG neuronal groups were trkC+ and had no Nav1.8 and CGRP. Among MM TG neurons, TRPV1+/CGRP- (somatostatin+), tyrosine hydroxylase (TH)+ (C-LTMR), TRPM8+, MrgprA3+, or trkB+ (Aδ-LTMR) subtypes have not been detected. Masseteric muscle fibers, tendons and masseteric fascia in mice and the common marmoset, a new world monkey, were exclusively innervated by either CGRP+/NFH+ or CGRP-/NFH+ medium-to-large neurons, which we found using a Nav1.8-YFP reporter, and labeling with CGRP, TRPV1, neurofilament heavy chain (NFH) and pgp9.5 antibodies. These nerves were mainly distributed in tendon and at junctions of deep-middle-superficial parts of MM. Overall, the data presented here demonstrates that MM is innervated by a distinct subset of TG neurons, which have unique characteristics and innervation patterns.


Assuntos
Músculo Masseter , Canais de Cátion TRPV , Animais , Face , Imuno-Histoquímica , Camundongos , Células Receptoras Sensoriais
10.
Ann Neurol ; 89(6): 1129-1144, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749851

RESUMO

OBJECTIVE: Migraine is three times more common in women. CGRP plays a critical role in migraine pathology and causes female-specific behavioral responses upon meningeal application. These effects are likely mediated through interactions of CGRP with signaling systems specific to females. Prolactin (PRL) levels have been correlated with migraine attacks. Here, we explore a potential interaction between CGRP and PRL in the meninges. METHODS: Prolactin, CGRP, and receptor antagonists CGRP8-37 or Δ1-9-G129R-hPRL were administered onto the dura of rodents followed by behavioral testing. Immunohistochemistry was used to examine PRL, CGRP and Prolactin receptor (Prlr) expression within the dura. Electrophysiology on cultured and back-labeled trigeminal ganglia (TG) neurons was used to assess PRL-induced excitability. Finally, the effects of PRL on evoked CGRP release from ex vivo dura were measured. RESULTS: We found that dural PRL produced sustained and long-lasting migraine-like behavior in cycling and ovariectomized female, but not male rodents. Prlr was expressed on dural afferent nerves in females with little-to-no presence in males. Consistent with this, PRL increased excitability only in female TG neurons innervating the dura and selectively sensitized CGRP release from female ex vivo dura. We demonstrate crosstalk between PRL and CGRP systems as CGRP8-37 decreases migraine-like responses to dural PRL. Reciprocally, Δ1-9-G129R-hPRL attenuates dural CGRP-induced migraine behaviors. Similarly, Prlr deletion from sensory neurons significantly reduced migraine-like responses to dural CGRP. INTERPRETATION: This CGRP-PRL interaction in the meninges is a mechanism by which these peptides could produce female-selective responses and increase the prevalence of migraine in women. ANN NEUROL 2021;89:1129-1144.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/metabolismo , Transtornos de Enxaqueca/metabolismo , Prolactina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
11.
J Neuroendocrinol ; 31(8): e12759, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31231869

RESUMO

Sensory neurones exhibit sex-dependent responsiveness to prolactin (PRL). This could contribute to sexual dimorphism in pathological pain conditions. The present study aimed to determine the mechanisms underlying sex-dependent PRL sensitivity in sensory neurones. A quantitative reverse transcriptase-polymerase chain reaction shows that prolactin receptor (Prlr) long and short isoform mRNAs are expressed at comparable levels in female and male mouse dorsal root ganglia (DRG). In Prlrcre/+ ;Rosa26LSL-tDTomato/+ reporter mice, percentages of Prlr+ sensory neurones in female and male DRG are also similar. Characterisation of Prlr+ DRG neurones using immunohistochemistry and electrophysiology revealed that Prlr+ DRG neurones are mainly peptidergic nociceptors in females and males. However, sensory neurone type-dependent expression of Prlr is sex dimorphic. Thus, Prlr+ populations fell into three small- and two medium-large-sized sensory neuronal groups. Prlr+ DRG neurones are predominantly medium-large sized in males and are proportionally more comprised of small-sized sensory neurones in females. Specifically, Prlr+ /IB4+ /CGRP+ neurones are four- to five-fold higher in numbers in female DRG. By contrast, Prlr+ /IB4- /CGRP+ /5HT3a+ /NPYR2- are predominant in male DRG. Prlr+ /IB4- /CGRP- , Prlr+ /IB4- /CGRP+ and Prlr+ /IB4- /CGRP+ /NPYR2+ neurones are evenly encountered in female and male DRG. These differences were confirmed using an independently generated single-cell sequencing dataset. Overall, we propose a novel mechanism by which sensory neurone type-dependent expression of Prlr could explain the unique sex dimorphism in responsiveness of nociceptors to PRL.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Receptores da Prolactina/genética , Animais , Células Cultivadas , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Receptores da Prolactina/metabolismo , Caracteres Sexuais
12.
PLoS One ; 13(6): e0198601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864146

RESUMO

Peptidergic sensory neurons play a critical role in nociceptive pathways. To precisely define the function and plasticity of sensory neurons in detail, new tools such as transgenic mouse models are needed. We employed electrophysiology and immunohistochemistry to characterize in detail dorsal root ganglion (DRG) neurons expressing an inducible CGRPcre-ER (CGRP-cre+); and compared them to DRG neurons expressing Nav1.8cre (Nav1.8-cre+), TRPV1cre (TRPV1-cre+) and TRPV1-GFP (V1-GFP+). Tamoxifen effectively induced CGRPcre-ER production in DRG. ≈87% of CGRPcre-ER-expressing neurons were co-labeled CGRP antibody. Three small and two medium-large-sized (5HT3a+/NPY2R- and NPY2R+) neuronal groups with unique electrophysiological profiles were CGRP-cre+. Nav1.8-cre+ neurons were detected in all CGRP-cre+ groups, as well as in 5 additional neuronal groups: MrgprD+/TRPA1-, MrgprD+/TRPA1+, TRPV1+/CGRP-, vGLUT3+ and ≈30% of trkC+ neurons. Differences between TRPV1cre and Nav1.8cre reporters were that unlike TRPV1-cre+, Nav1.8-cre+ expression was detected in non-nociceptive vGLUT3+ and trkC+ populations. Many TRPV1-cre+ neurons did not respond to capsaicin. In contrast, V1-GFP+ neurons were in 4 groups, each of which was capsaicin-sensitive. Finally, none of the analyzed reporter lines showed cre-recombination in trkB+, calbindin+, 70% of trkC+ or parvalbumin+ neurons, which together encompassed ≈20% of Nav1.8-cre- DRG neurons. The data presented here increases our knowledge of peptidergic sensory neuron characteristics, while showing the efficiency and specificity manipulation of peptidergic neurons by the CGRPcre-ER reporter. We also demonstrate that manipulation of all C- and A-nociceptors is better achieved with TRPV1-cre reporter. Finally, the described approach for detailed characterization of sensory neuronal groups can be applied to a variety of reporter mice.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Genes Reporter/genética , Nociceptividade/fisiologia , Nociceptores/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Cultivadas , Gânglios Espinais/citologia , Masculino , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...