Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(11): e1009591, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752447

RESUMO

Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.


Assuntos
Caenorhabditis elegans/fisiologia , Redes Neurais de Computação , Algoritmos , Animais
2.
Neural Comput ; 30(8): 2210-2244, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29894651

RESUMO

Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.


Assuntos
Evolução Biológica , Modelos Biológicos , Redes Neurais de Computação , Algoritmos , Animais , Redes Reguladoras de Genes , Humanos , Serviços de Informação , Rede Nervosa/fisiologia , Mapas de Interação de Proteínas , Rede Social
3.
J Endocr Soc ; 1(6): 712-725, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28825052

RESUMO

Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1. The lead compound ML290 demonstrated preferred absorption, distribution, metabolism, and excretion profiles, is easy to synthesize, and has high stability in vivo. However, ML290 does not activate rodent RXFP1s and therefore cannot be tested in common preclinical animal models. Here we describe the production and analysis of a mouse transgenic model, a knock-out/knock-in of the human RXFP1 (hRXFP1) complementary DNA into the mouse Rxfp1 (mRxfp1) gene. Insertion of the vector into the mRxfp1 locus caused disruption of mRxfp1 and expression of hRXFP1. The transcriptional expression pattern of the hRXFP1 allele was similar to mRxfp1. Female mice homozygous for hRXFP1 showed relaxation of the pubic symphysis at parturition and normal development of mammary nipples and vaginal epithelium, indicating full complementation of mRxfp1 gene ablation. Intravenous injection of relaxin led to an increase in heart rate in humanized and wild-type females but not in Rxfp1-deficient mice, whereas ML290 increased heart rate in humanized but not wild-type animals, suggesting specific target engagement by ML290. Moreover, intraperitoneal injection of ML290 caused a decrease in blood osmolality. Taken together, our data show humanized RXFP1 mice can be used for testing relaxin receptor modulators in various preclinical studies.

4.
PLoS One ; 8(10): e77351, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098584

RESUMO

The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.


Assuntos
Criptorquidismo/patologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores Acoplados a Proteínas G/genética , Espermatogônias/patologia , Células-Tronco/patologia , Testículo/patologia , Fatores Etários , Animais , Apoptose , Diferenciação Celular , Criptorquidismo/genética , Criptorquidismo/metabolismo , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...