Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 927, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649720

RESUMO

The Galway sheep population is the only native Irish sheep breed and this livestock genetic resource is currently categorised as 'at-risk'. In the present study, comparative population genomics analyses of Galway sheep and other sheep populations of European origin were used to investigate the microevolution and recent genetic history of the breed. These analyses support the hypothesis that British Leicester sheep were used in the formation of the Galway. When compared to conventional and endangered breeds, the Galway breed was intermediate in effective population size, genomic inbreeding and runs of homozygosity. This indicates that, although the Galway breed is declining, it is still relatively genetically diverse and that conservation and management plans informed by genomic information may aid its recovery. The Galway breed also exhibited distinct genomic signatures of artificial or natural selection when compared to other breeds, which highlighted candidate genes that may be involved in production and health traits.

2.
PLoS One ; 8(1): e53172, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23301039

RESUMO

This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecX(G) and FecX(B)) and the third (FecG(H)) in GDF9. All three mutations segregate in Belclare sheep while one, FecX(B), has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecX(G), FecX(B) and FecG(H)) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecX(G) mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecX(B) was only found among the hyper-prolific ewes. The FecG(H) mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecX(G) and FecG(H) mutations in Belclare and Cambridge sheep and that the FecX(B) mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960's and subsequently used in the genesis of the Belclare.


Assuntos
Proteína Morfogenética Óssea 15/metabolismo , Fertilidade/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Mutação , Carneiro Doméstico/genética , Animais , Cruzamento , Feminino , Frequência do Gene , Variação Genética , Genótipo , Irlanda , Ovulação/genética , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Ovinos , Especificidade da Espécie , Reino Unido
3.
BMC Genomics ; 13: 16, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22235840

RESUMO

BACKGROUND: The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. RESULTS: In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). CONCLUSIONS: The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait.


Assuntos
Fertilidade/genética , Frequência do Gene , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
4.
BMC Genet ; 12: 4, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21214909

RESUMO

BACKGROUND: Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. RESULTS: SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. CONCLUSIONS: Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.


Assuntos
Bovinos/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Animais , Bovinos/embriologia , Bovinos/crescimento & desenvolvimento , Epigênese Genética , Fertilidade/genética , Regulação da Expressão Gênica , Frequência do Gene , Leite , Polimorfismo de Nucleotídeo Único , Reprodução/genética
5.
J Dairy Res ; 78(1): 1-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20822563

RESUMO

The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2 = 0·995), were associated with milk yield (P ≤ 0·01) and milk protein yield (P ≤ 0·05); the rs42196901 SNP was also associated (P ≤ 0·05) with milk fat yield. Associations (P ≤ 0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P ≤ 0·05), while an association (P ≤ 0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.


Assuntos
Bovinos/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Lactação/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Composição Corporal , Peso Corporal , Cruzamento , Bovinos/fisiologia , Gorduras/análise , Feminino , Fertilidade/genética , Frequência do Gene , Genótipo , Leite/química , Proteínas do Leite/análise , Fenótipo
6.
J Hered ; 102(1): 94-101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20817761

RESUMO

Previous studies show that DNA sequence variation within the mammalian DLK1-DIO3 imprinted domain influences production traits in domestic livestock, most notably the ovine callipyge phenotype. We assessed genotype-phenotype associations between 7 single nucleotide polymorphisms (SNPs) within the orthologous bovine DLK1-DIO3 domain and performance traits in 848 progeny-tested Holstein-Friesian dairy sires. One SNP (MEG3_01) located proximal to the maternally expressed 3 (MEG3/Gtl2) gene was associated with milk yield, subcutaneous fat levels, and progeny carcass conformation (P ≤ 0.01) and also tended to be associated with milk fat and protein yield (P ≤ 0.10). A single SNP (CLPG_01) within the putative CLPG1 locus was associated with progeny carcass fat (P ≤ 0.05), whereas a single SNP (PEG11_01) located proximal to the paternally expressed 11 (PEG11/Rtl) gene was associated with progeny carcass weight (P ≤ 0.05). The MEG3_01 SNP together with an additional 2 SNPs (MEG8_01 and MEG8_02) located proximal to the putative maternally expressed 8 (MEG8/Rian) ortholog were associated (P ≤ 0.05) with perinatal mortality. Finally, one SNP (MEG3_03) was associated (P ≤ 0.05) with gestation length, whereas both the CLPG_01 and MEG8_01 SNPs also tended to be associated with calving interval (P ≤ 0.10). Linkage disequilibrium analysis suggests that some phenotypic associations observed at these loci are independent. To our knowledge, this is one of the first studies demonstrating associations between the bovine DLK1-DIO3 domain and milk, carcass, fertility and, health traits in cattle. This imprinted domain may serve as a potential target for future genetic selection strategies.


Assuntos
Bovinos/genética , Impressão Genômica , Leite/química , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Feminino , Expressão Gênica , Genótipo , Desequilíbrio de Ligação , Masculino , Dados de Sequência Molecular , Família Multigênica , Fenótipo , Análise de Sequência de DNA
7.
Front Genet ; 2: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22303302

RESUMO

Insulin-like growth factor 1 (IGF-1) has been shown to be associated with fertility, growth, and development in cattle. The aim of this study was to (1) identify novel single nucleotide polymorphisms (SNPs) in the bovine IGF-1 gene and alongside previously identified SNPs (2) determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, and 3' regulatory regions, encompassing ~5 kb of IGF-1. Genotyping and associations with daughter performance for milk production, fertility, survival, and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P < 0.05) were identified between six SNPs (four novel and two previously identified) and milk composition, survival, body condition score, and body size. The C allele of AF017143 a previously published SNP (C-512T) in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P < 0.05) with increased cow carcass weight (i.e., an indicator of mature cow size). Novel SNPs were identified in the 3' region of IGF-1 were associated (P < 0.05) with functional survival and chest width. The remaining four SNPs, all located within introns of IGF-1 were associated (P < 0.05) with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation, and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.

8.
BMC Genet ; 11: 93, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20942903

RESUMO

BACKGROUND: Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). RESULTS: Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). CONCLUSIONS: Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.


Assuntos
Bovinos/genética , Impressão Genômica , Polimorfismo de Nucleotídeo Único , Animais , Distribuição da Gordura Corporal , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA