Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Psychol Psychother ; 96(1): 40-55, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161754

RESUMO

OBJECTIVES: The aim of this study was to explore the potential relationship between shame, perfectionism and Anorexia Nervosa (AN) and their impact on recovery from AN. METHOD: Semi-structured interviews were conducted with 11 people currently accessing services for AN. Interviews were transcribed and analysed using constructivist-grounded theory methodology. RESULTS: A model was developed which found a vicious cycle between shame and perfectionism. Participants tried to alleviate their feelings of shame by striving for perfectionism, however failing caused them more shame. Participants who disclosed childhood trauma believed their shame preceded their perfectionism. Participants who did not disclose trauma either believed their perfectionism preceded shame or they were unsure of which occurred first. Participants' responses suggested the following pathways from perfectionism to AN: needing goals; the need for a perfect life including a perfect body and AN being something they could be perfect at. The pathways identified between shame and AN entailed mechanisms via which AN could be used to escape shame, either by seeking pride through AN, seeking to numb shame through AN, seeking to escape body shame and punishing the self. AN was found to feed back into shame in two ways: when people had AN they felt ashamed when they broke their dietary rules, and also simultaneously people felt ashamed of their AN as they were not able to recover. Shame and perfectionism influenced one another in a cyclical pattern, in which shame drove perfectionism and not attaining high standards led to shame. Shame and perfectionism also impacted on recovery in several ways. AN functioned to numb participants' emotions, becoming part of their identity over time. AN also brought respite from a constant striving towards perfectionism. The need for a perfect recovery also influenced their motivation to engage in treatment, and fear of a return of strong emotions was another deterrent to recovery. CONCLUSION: The findings of this paper show perfectionism and shame to both be important in the aetiology and maintenance of AN and to have an impact on recovery from AN.


Assuntos
Anorexia Nervosa , Perfeccionismo , Humanos , Anorexia Nervosa/psicologia , Teoria Fundamentada , Autoimagem , Vergonha
2.
J Med Chem ; 65(4): 3359-3370, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35148092

RESUMO

Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are emerging as attractive therapeutic targets in diseases, such as cancer, immunological disorders, and neurodegeneration, owing to their central role in regulating cell signaling pathways that are either dysfunctional or can be modulated to promote cell survival. Different modes of binding may enhance inhibitor selectivity and reduce off-target effects in cells. Here, we describe efforts to improve the physicochemical properties of the selective PI5P4Kγ inhibitor, NIH-12848 (1). These improvements enabled the demonstration that this chemotype engages PI5P4Kγ in intact cells and that compounds from this series do not inhibit PI5P4Kα or PI5P4Kß. Furthermore, the first X-ray structure of PI5P4Kγ bound to an inhibitor has been determined with this chemotype, confirming an allosteric binding mode. An exemplar from this chemical series adopted two distinct modes of inhibition, including through binding to a putative lipid interaction site which is 18 Å from the ATP pocket.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Ligação Competitiva , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Especificidade por Substrato
3.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 1003-1014, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31692474

RESUMO

Apoptosis is a crucial process by which multicellular organisms control tissue growth, removal and inflammation. Disruption of the normal apoptotic function is often observed in cancer, where cell death is avoided by the overexpression of anti-apoptotic proteins of the Bcl-2 (B-cell lymphoma 2) family, including Mcl-1 (myeloid cell leukaemia 1). This makes Mcl-1 a potential target for drug therapy, through which normal apoptosis may be restored by inhibiting the protective function of Mcl-1. Here, the discovery and biophysical properties of an anti-Mcl-1 antibody fragment are described and the utility of both the scFv and Fab are demonstrated in generating an Mcl-1 crystal system amenable to iterative structure-guided drug design.


Assuntos
Descoberta de Drogas , Fragmentos Fab das Imunoglobulinas/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Anticorpos de Cadeia Única/química , Animais , Apoptose , Células CHO , Clonagem Molecular , Cricetulus , Escherichia coli/genética , Humanos
4.
Elife ; 82019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31436532

RESUMO

The immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B is critical for platelet production and activation. Loss of G6b-B results in severe macrothrombocytopenia, myelofibrosis and aberrant platelet function in mice and humans. Using a combination of immunohistochemistry, affinity chromatography and proteomics, we identified the extracellular matrix heparan sulfate (HS) proteoglycan perlecan as a G6b-B binding partner. Subsequent in vitro biochemical studies and a cell-based genetic screen demonstrated that the interaction is specifically mediated by the HS chains of perlecan. Biophysical analysis revealed that heparin forms a high-affinity complex with G6b-B and mediates dimerization. Using platelets from humans and genetically modified mice, we demonstrate that binding of G6b-B to HS and multivalent heparin inhibits platelet and megakaryocyte function by inducing downstream signaling via the tyrosine phosphatases Shp1 and Shp2. Our findings provide novel insights into how G6b-B is regulated and contribute to our understanding of the interaction of megakaryocytes and platelets with glycans.


Assuntos
Plaquetas/fisiologia , Heparitina Sulfato/metabolismo , Megacariócitos/fisiologia , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais
5.
J Med Chem ; 60(8): 3438-3450, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28376306

RESUMO

There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Cães , Descoberta de Drogas , Humanos , Metilação , Inibidores de Proteínas Quinases/farmacocinética
6.
J Med Chem ; 59(24): 11079-11097, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28002961

RESUMO

Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology. SMYD2 is reported to be an oncogenic methyltransferase that represses the functional activity of the tumor suppressor proteins p53 and RB. HTS screening led to identification of five distinct substrate-competitive chemical series. Determination of liganded crystal structures of SMYD2 contributed significantly to "hit-to-lead" design efforts, culminating in the creation of potent and selective inhibitors that were used to understand the functional consequences of SMYD2 inhibition. Taken together, these results have broad implications for inhibitor design against KMTs and clearly demonstrate the potential for developing novel therapies against these enzymes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HCT116 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
7.
Sci Adv ; 1(7): e1500315, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26601230

RESUMO

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a ß-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 µM] and neutral (K D of ~252 µM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

8.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546219

RESUMO

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Assuntos
Centrossomo/metabolismo , Ftalazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Administração Oral , Animais , Sítios de Ligação , Células CACO-2 , Centrossomo/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Microssomos/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estrutura Terciária de Proteína , Ratos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo
9.
J Med Chem ; 58(11): 4790-801, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25977981

RESUMO

The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.


Assuntos
Desenho de Fármacos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 6(3): 254-9, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25815142

RESUMO

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA