Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454081

RESUMO

Trauma-related intrusive memories (TR-IMs) possess unique phenomenological properties that contribute to adverse post-traumatic outcomes, positioning them as critical intervention targets. However, transdiagnostic treatments for TR-IMs are scarce, as their underlying mechanisms have been investigated separate from their unique phenomenological properties. Extant models of more general episodic memory highlight dynamic hippocampal-cortical interactions that vary along the anterior-posterior axis of the hippocampus (HPC) to support different cognitive-affective and sensory-perceptual features of memory. Extending this work into the unique properties of TR-IMs, we conducted a study of eighty-four trauma-exposed adults who completed daily ecological momentary assessments of TR-IM properties followed by resting-state functional magnetic resonance imaging (rs-fMRI). Spatiotemporal dynamics of anterior and posterior hippocampal (a/pHPC)-cortical networks were assessed using co-activation pattern analysis to investigate their associations with different properties of TR-IMs. Emotional intensity of TR-IMs was inversely associated with the frequency and persistence of an aHPC-default mode network co-activation pattern. Conversely, sensory features of TR-IMs were associated with more frequent co-activation of the HPC with sensory cortices and the ventral attention network, and the reliving of TR-IMs in the "here-and-now" was associated with more persistent co-activation of the pHPC and the visual cortex. Notably, no associations were found between HPC-cortical network dynamics and conventional symptom measures, including TR-IM frequency or retrospective recall, underscoring the utility of ecological assessments of memory properties in identifying their neural substrates. These findings provide novel insights into the neural correlates of the unique features of TR-IMs that are critical for the development of individualized, transdiagnostic treatments for this pervasive, difficult-to-treat symptom.

2.
Transl Psychiatry ; 14(1): 74, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307849

RESUMO

Trauma-related intrusive memories (TR-IMs) are hallmark symptoms of posttraumatic stress disorder (PTSD), but their neural correlates remain partly unknown. Given its role in autobiographical memory, the hippocampus may play a critical role in TR-IM neurophysiology. The anterior and posterior hippocampi are known to have partially distinct functions, including during retrieval of autobiographical memories. This study aimed to investigate the relationship between TR-IM frequency and the anterior and posterior hippocampi morphology in PTSD. Ninety-three trauma-exposed adults completed daily ecological momentary assessments for fourteen days to capture their TR-IM frequency. Participants then underwent anatomical magnetic resonance imaging to obtain measures of anterior and posterior hippocampal volumes. Partial least squares analysis was applied to identify a structural covariance network that differentiated the anterior and posterior hippocampi. Poisson regression models examined the relationship of TR-IM frequency with anterior and posterior hippocampal volumes and the resulting structural covariance network. Results revealed no significant relationship of TR-IM frequency with hippocampal volumes. However, TR-IM frequency was significantly negatively correlated with the expression of a structural covariance pattern specifically associated with the anterior hippocampus volume. This association remained significant after accounting for the severity of PTSD symptoms other than intrusion symptoms. The network included the bilateral inferior temporal gyri, superior frontal gyri, precuneus, and fusiform gyri. These novel findings indicate that higher TR-IM frequency in individuals with PTSD is associated with lower structural covariance between the anterior hippocampus and other brain regions involved in autobiographical memory, shedding light on the neural correlates underlying this core symptom of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Adulto , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Avaliação Momentânea Ecológica , Encéfalo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Córtex Pré-Frontal/patologia , Imageamento por Ressonância Magnética/métodos
3.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658307

RESUMO

Dynamic control of protein degradation via the ubiquitin proteasome system (UPS) is thought to play a crucial role in neuronal function and synaptic plasticity. The proteasome subunit Rpt6, an AAA ATPase subunit of the 19S regulatory particle (RP), has emerged as an important site for regulation of 26S proteasome function in neurons. Phosphorylation of Rpt6 on serine 120 (S120) can stimulate the catalytic rate of substrate degradation by the 26S proteasome and this site is targeted by the plasticity-related kinase Ca2+/calmodulin-dependent kinase II (CaMKII), making it an attractive candidate for regulation of proteasome function in neurons. Several in vitro studies have shown that altered Rpt6 S120 phosphorylation can affect the structure and function of synapses. To evaluate the importance of Rpt6 S120 phosphorylation in vivo, we created two mouse models which feature mutations at S120 that block or mimic phosphorylation at this site. We find that peptidase and ATPase activities are upregulated in the phospho-mimetic mutant and downregulated in the phospho-dead mutant [S120 mutated to aspartic acid (S120D) or alanine (S120A), respectively]. Surprisingly, these mutations had no effect on basal synaptic transmission, long-term potentiation (LTP), and dendritic spine dynamics and density in the hippocampus. Furthermore, these mutants displayed no deficits in cued and contextual fear memory. Thus, in a mouse model that blocks or mimics phosphorylation at this site, either compensatory mechanisms negate these effects, or small variations in proteasome activity are not enough to induce significant changes in synaptic structure, plasticity, or behavior.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Aprendizagem , Plasticidade Neuronal , Complexo de Endopeptidases do Proteassoma , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Fosforilação , Sinapses/metabolismo
4.
Mol Cell Neurosci ; 88: 62-69, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29217409

RESUMO

Repeated exposure to cocaine produces structural and functional modifications at synapses from neurons in several brain regions including the nucleus accumbens. These changes are thought to underlie cocaine-induced sensitization. The ubiquitin proteasome system plays a crucial role in the remodeling of synapses and has recently been implicated in addiction-related behavior. The ATPase Rpt6 subunit of the 26S proteasome is phosphorylated by Ca2+/calmodulin-dependent protein kinases II alpha at ser120 which is thought to regulate proteasome activity and distribution in neurons. Here, we demonstrate that Rpt6 phosphorylation is involved in cocaine-induced locomotor sensitization. Cocaine concomitantly increases proteasome activity and Rpt6 S120 phosphorylation in cultured neurons and in various brain regions of wild type mice including the nucleus accumbens and prefrontal cortex. In contrast, cocaine does not increase proteasome activity in Rpt6 phospho-mimetic (ser120Asp) mice. Strikingly, we found a complete absence of cocaine-induced locomotor sensitization in the Rpt6 ser120Asp mice. Together, these findings suggest a critical role for Rpt6 phosphorylation and proteasome function in the regulation cocaine-induced behavioral plasticity.


Assuntos
Cocaína/farmacologia , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina/metabolismo , Animais , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
5.
Neurosci Lett ; 567: 45-50, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24680747

RESUMO

Psychostimulants containing methylphenidate (MPH) are increasingly being used both on and off-label to enhance learning and memory. Still, almost no studies have investigated MPH's ability to specifically improve spatial or long-term memory. Here we examined the effect of training with 1 or 10mg/kg MPH on hidden platform learning in the Morris water maze. 10mg/kg MPH improved memory acquisition and retention, while 1mg/kg MPH improved memory retention. Taken together with prior evidence that low, clinically relevant, doses of MPH (0.01-1mg/kg MPH) enhance fear memory we conclude that MPH broadly enhances memory.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Memória/efeitos dos fármacos , Metilfenidato/farmacologia , Orientação/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Medo , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Retenção Psicológica/efeitos dos fármacos
6.
Front Behav Neurosci ; 8: 70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639635

RESUMO

The atypical PKC isoforms, PKMζ and PKCλ have been proposed as integral substrates of long-term memory (LTM). Inhibition of these isoforms has recently been demonstrated to be sufficient for impairing the expression and maintenance of long-term potentiation. Additionally, the pseudosubstrate inhibitor, zeta inhibitory peptide (ZIP), which effectively blocks PKMζ and PKCλ, has previously been shown to disrupt associative memory; very little is known about its effects on pathological nonassociative forms of memory related to addiction. The neural and molecular substrates of memory and addiction have recently been argued to overlap. Here, we used ZIP to disrupt PKMζ and PKCλ activity to examine their role in cocaine sensitization, a nonassociative, addiction-related memory argued to underlie the transition from casual to pathological drug use. We examined the effects of both continuous and acute administration of ZIP. Even a single application of ZIP blocked the development of sensitization; sustained inhibition using osmotic pumps produced an almost complete blockade of sensitization. Further, a single application of ZIP was shown to reduce membrane-bound AMPAR expression. These results demonstrate a novel, critical role for the atypical PKC isoforms in nonassociative memory and cocaine addiction.

7.
Learn Mem ; 21(2): 82-9, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24434869

RESUMO

Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01-10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1-10 mg/kg, i.p.), bupropion (0.5-20 mg/kg, i.p.), and citalopram (0.01-10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.


Assuntos
Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Metilfenidato/farmacologia , Nootrópicos/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Anfetamina/farmacologia , Animais , Cloridrato de Atomoxetina , Bupropiona/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Citalopram/farmacologia , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Feminino , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Propilaminas/farmacologia , Reforço Psicológico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Percepção Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...