Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Transfusion ; 61(10): 3017-3025, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480352

RESUMO

BACKGROUND: Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS: To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS: RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION: Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/genética , Camundongos/genética , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Pesquisa Biomédica , Preservação de Sangue , Eritrócitos/metabolismo , Patrimônio Genético , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único
3.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138756

RESUMO

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress. Moreover, G6PD deficiency is associated with kidney disease, diabetes, pulmonary hypertension, immunological defects, and neurodegenerative diseases. To date, the only available mouse models have decreased levels of WT stable G6PD caused by promoter mutations. However, human G6PD mutations are missense mutations that result in decreased enzymatic stability. As such, this results in very low activity in red blood cells (RBCs) that cannot synthesize new protein. To generate a more accurate model, the human sequence for a severe form of G6PD deficiency, Med(-), was knocked into the murine G6PD locus. As predicted, G6PD levels were extremely low in RBCs, and deficient mice had increased hemolytic sequelae to oxidant stress. Nonerythroid organs had metabolic changes consistent with mild G6PD deficiency, consistent with what has been observed in humans. Juxtaposition of G6PD-deficient and WT mice revealed altered lipid metabolism in multiple organ systems. Together, these findings both establish a mouse model of G6PD deficiency that more accurately reflects human G6PD deficiency and advance our basic understanding of altered metabolism in this setting.


Assuntos
Eritrócitos/metabolismo , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Hemólise/genética , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Masculino , Camundongos , Mutação , Estresse Oxidativo/genética
4.
Front Immunol ; 12: 629608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777014

RESUMO

Red blood cells expressing alloantigens are well known to be capable of inducing robust humoral alloantibody responses both in transfusion and pregnancy. However, the majority of transfusion recipients and pregnant women never make alloantibodies, even after repeat exposure to foreign RBCs. More recently, RBCs have been used as a cellular therapeutic-very much like transfusion, engineered RBCs are highly immunogenic in some cases but not others. In animal models of both transfusion and RBC based therapeutics, RBCs that do not induce an immune response also cause tolerance. Despite a robust phenomenology, the mechanisms of what regulates immunity vs. tolerance to RBCs remains unclear. However, it has been reported that copy number of alloantigens on the RBCs is a critical factor, with a very low copy number causing non-responsiveness (in both humans and mice) and also leading to tolerance in mice. Recently, we reported that an IgG2c specific for an RBC antigen can substantially enhance the humoral immune response upon transfusion of RBCs expressing that antigen. Herein, we report that an IgG2c converts RBCs with low antigen copy number from a tolerogenic to an immunogenic stimulus. These findings report the first known stimulus that induces humoral alloimmunization to a low copy number RBC alloantigen and identify a previously undescribed molecular switch that has the ability to affect responder vs. non-responder phenotypes of transfusion recipients.


Assuntos
Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/imunologia , Dosagem de Genes , Tolerância Imunológica , Imunidade Humoral , Imunoglobulina G/imunologia , Isoanticorpos/imunologia , Isoantígenos/genética , Isoantígenos/imunologia , Animais , Variações do Número de Cópias de DNA , Epitopos , Feminino , Imunoglobulina G/sangue , Isoanticorpos/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Transfusion ; 61(3): 687-691, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33336414

RESUMO

BACKGROUND: Platelet transfusions remain a mainstay of treatment for many patients with thrombocytopenia, but can lead to alloantibodies to Human Leukocyte Antigens (anti-HLA) resulting in inadequate responses to subsequent platelet transfusions (refractoriness), as well as complicate transplantation. Despite substantial decreases in alloimmunization with the implementation of leukoreduction, a significant percentage of patients still become alloimmunized following platelet transfusions. It remains unclear why some patients make anti-HLA antibodies, but others do not make anti-HLA antibodies even with chronic transfusion. Antecedent pregnancy correlates with risk of alloimmunization due to platelet transfusion in humans - however, isolation of pregnancy as a single variable is not possible in human populations. STUDY DESIGN AND METHODS: A tractable murine model of pregnancy and transfusion was engineered by breeding C57BL/6 (H-2b ) dames with BALB/c (H-2d ) sires. After pregnancy, female mice were transfused with leukoreduced platelets from F1 (H-2b/d ) donors that expressed the same paternal major histocompatibility complex (MHC) H-2d alloantigens as the sires. Control groups allowed isolation of pregnancy or transfusion alone as independent variables. Alloimmunization was determined by testing serum for antibodies to H-2d MHC alloantigens. RESULTS: No alloantibodies were detected after pregnancy alone, or in response to transfusion of platelets alone; however, significant levels of alloantibodies were detected when pregnancy was followed by transfusion. CONCLUSIONS: These findings isolate antecedent pregnancy as a causal contribution to increased frequencies of alloimmunization by subsequent platelet transfusion in mice and provide a platform for ongoing mechanistic investigation.


Assuntos
Antígenos HLA/imunologia , Isoanticorpos/sangue , Isoanticorpos/imunologia , Isoantígenos/sangue , Isoantígenos/imunologia , Transfusão de Plaquetas/efeitos adversos , Animais , Plaquetas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez
6.
Mol Immunol ; 127: 79-86, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947169

RESUMO

Immunoglobulin G (IgG) antibodies are important for protection against pathogens and exert effector functions through binding to IgG-Fc receptors (FcγRs) on myeloid and natural killer cells, resulting in destruction of opsonized target cells. Despite interspecies differences, IgG subclasses and FcγRs show substantial similarities and functional conservation between mammals. Accordingly, binding of human IgG (hIgG) to mouse FcγRs (mFcγRs) has been utilized to study effector functions of hIgG in mice. In other applications, such as immunostaining with mouse IgG monoclonal antibodies (mAbs), these cross-reactivities are undesired and prone to misinterpretation. Despite this drawback, the binding of mouse IgG (mIgG) subclasses to human FcγR (hFcγR) classes has never been fully documented. Here, we report detailed and quantifiable characterization of binding affinities for all mIgG subclasses to hFcγRs, including functional polymorphic variants. mIgG subclasses show the strongest binding to hFcγRIa, with relative affinities mIgG2a = mIgG2c > mIgG3 >> mIgG2b, and no binding by mIgG1. hFcγRIIa/b showed general low reactivities to all mIgG (mIgG1> mIgG2a/c > mIgG2b), with no reactivity to mIgG3. A particularly high affinity was observed for mIgG1 to the hFcγRIIa-R131 polymorphic variant. hFcγRIIIa showed lower binding (mIgG2a/c > mIgG3), slightly favouring binding to the hFcγRIIIa-V158 over the F158 polymorphic variant. No binding was observed of mIgG to hFcγRIIIb. Deglycosylation of mIgG1 did not abrogate binding to hFcγRIIa-R131, nor did deglycosylation of mIgG2a/c and mIgG3 prevent hFcγRIa binding. Importantly, deglycosylation of the least cross-reactive mIgG subclass, mIgG2b, abrogated reactivity to all hFcγRs. Together, these data document for the first time the full spectrum of cross-reactivities of mouse IgG to human FcγRs.


Assuntos
Anticorpos/imunologia , Reações Cruzadas/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Proteínas de Bactérias/metabolismo , Sequência Conservada , Glicosídeo Hidrolases/metabolismo , Glicosilação , Humanos , Imunoglobulina G/química , Camundongos , Polissacarídeos/metabolismo , Ligação Proteica , Especificidade da Espécie
7.
Front Immunol ; 11: 1516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765523

RESUMO

It has long been appreciated that immunoglobulins are not just the effector endpoint of humoral immunity, but rather have a complex role in regulating antibody responses themselves. Donor derived anti-RhD IgG has been used for over 50 years as an immunoprophylactic to prevent maternal alloimmunization to RhD. Although anti-RhD has dramatically decreased rates of hemolytic disease of the fetus and newborn (for the RhD alloantigen), anti-RhD also fails in some cases, and can even paradoxically enhance immune responses in some circumstances. Attempts to generate a monoclonal anti-RhD have largely failed, with some monoclonals suppressing less than donor derived anti-RhD and others enhancing immunity. These difficulties likely result, in part, because the mechanism of anti-RhD remains unclear. However, substantial evidence exists to reject the common explanations of simple clearance of RhD + RBCs or masking of antigen. Donor derived anti-RhD is a mixture of 4 different IgG subtypes. To the best of our knowledge an analysis of the role different IgG subtypes play in immunoregulation has not been carried out; and, only IgG1 and IgG3 have been tested as monoclonals. Multiple attempts to elicit alloimmune responses to human RhD epitopes in mice have failed. To circumvent this limitation, we utilize a tractable animal model of RBC alloimmunization using the human Kell glycoprotein as an antigen to test the effect of IgG subtype on immunoregulation by antibodies to RBC alloantigens. We report that the ability of an anti-RBC IgG to enhance, suppress (at the level of IgM responses), or have no effect is a function of the IgG subclass in this model system.


Assuntos
Eritrócitos/imunologia , Imunidade Humoral , Imunoglobulina G/imunologia , Imunomodulação , Isoanticorpos/imunologia , Isoantígenos/imunologia , Receptores Fc/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Eritrócitos/metabolismo , Imunização Passiva , Camundongos , Camundongos Knockout
8.
J Clin Invest ; 130(11): 5909-5923, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32730229

RESUMO

Antibodies targeting human leukocyte antigen (HLA)/major histocompatibility complex (MHC) proteins limit successful transplantation and transfusion, and their presence in blood products can cause lethal transfusion-related acute lung injury (TRALI). It is unclear which cell types are bound by these anti-leukocyte antibodies to initiate an immunologic cascade resulting in lung injury. We therefore conditionally removed MHC class I (MHC I) from likely cellular targets in antibody-mediated lung injury. Only the removal of endothelial MHC I reduced lung injury and mortality, related mechanistically to absent endothelial complement fixation and lung platelet retention. Restoration of endothelial MHC I rendered MHC I-deficient mice susceptible to lung injury. Neutrophil responses, including neutrophil extracellular trap (NET) release, were intact in endothelial MHC I-deficient mice, whereas complement depletion reduced both lung injury and NETs. Human pulmonary endothelial cells showed high HLA class I expression, and posttransfusion complement activation was increased in clinical TRALI. These results indicate that the critical source of antigen for anti-leukocyte antibodies is in fact the endothelium, which reframes our understanding of TRALI as a rapid-onset vasculitis. Inhibition of complement activation may have multiple beneficial effects of reducing endothelial injury, platelet retention, and NET release in conditions where antibodies trigger these pathogenic responses.


Assuntos
Ativação do Complemento/imunologia , Endotélio/imunologia , Isoanticorpos/imunologia , Lesão Pulmonar Aguda Relacionada à Transfusão/imunologia , Animais , Linhagem Celular , Endotélio/patologia , Armadilhas Extracelulares/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Neutrófilos/patologia , Lesão Pulmonar Aguda Relacionada à Transfusão/patologia
9.
Transfusion ; 60(5): 1060-1068, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369193

RESUMO

BACKGROUND: Anti-red blood cell (RBC) alloantibodies consisting of only the immunoglobulin G (IgG) 4 subtype are typically considered clinically insignificant. A US Food and Drug Administration-approved monoclonal anti-human globulin (16H8) is nonreactive with IgG4, which has been considered a benefit to avoid testing interference from IgG4. However, 16H8 also does not recognize two natural IgG3 variants (IgG3-03 and IgG3-13). Thus, 16H8 may miss clinically significant alloantibodies in some settings. STUDY DESIGN AND METHODS: Novel mouse anti-human IgG hybridomas were generated and screened for reactivity with 32 human variants of anti-KEL1 across different IgG subtypes, as well as mutants to allow epitope mapping. Anti-IgG reactivity was determined using KEL1+ RBCs bound by each IgG variant as targets. Binding of anti-IgG was determined by flow cytometry. RESULTS: 16H8 recognized an epitope involving amino acid 419, which is glutamate in IgG4, IgG3-03, and IgG3-13, explaining the lack of 16H8 reactivity with these subtypes/isoallotypes. A new monoclonal antibody (PUMA8) was isolated that, like 16H8, was nonreactive with IgG4 but without blind spots for known variants of IgG1, IgG2, or IgG3. PUMA8 recognized an epitope containing arginine at position 355, which is glutamine in IgG4. However, a recently described new IgG4 variant with an arginine at position 355 results in PUMA8 reactivity. CONCLUSION: PUMA8 represents an alternative to 16H8 that avoids IgG4 but without blind spots for IgG3 variants. However, PUMA8 reacts with one recently described IgG4 variant. In addition to relevance to immunohematology, these studies highlight the importance of patient variation with regards to assay performance in an era of personalized medicine.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Imunoglobulinas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Eritrócitos/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Testes Imunológicos , Isoanticorpos/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Análise de Sequência de Proteína
10.
Blood Adv ; 4(7): 1526-1537, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32289162

RESUMO

Antibodies are typically thought of as the endpoint of humoral immunity that occur as the result of an adaptive immune response. However, affinity-matured antibodies can be present at the initiation of a new immune response, most commonly because of passive administration as a medical therapy. The current paradigm is that immunoglobulin M (IgM), IgA, and IgE enhance subsequent humoral immunity. In contrast, IgG has a "dual effect" in which it enhances responses to soluble antigens but suppresses responses to antigens on red blood cells (RBCs) (eg, immunoprophylaxis with anti-RhD). Here, we report a system in which passive antibody to an RBC antigen promotes a robust cellular immune response leading to endogenous CD4+ T-cell activation, germinal center formation, antibody secretion, and immunological memory. The mechanism requires ligation of Fcγ receptors on a specific subset of dendritic cells that results in CD4+ T-cell activation and expansion. Moreover, antibodies cross-enhance responses to a third-party antigen, but only if it is expressed on the same RBC as the antigen recognized by the antibody. Importantly, these observations were IgG subtype specific. Thus, these findings demonstrate that antibodies to RBC alloantigens can enhance humoral immunity in an IgG subtype-specific fashion and provide mechanistic elucidation of the enhancing effects.


Assuntos
Imunidade Humoral , Isoantígenos , Animais , Eritrócitos , Imunoglobulina G , Imunoglobulina M , Camundongos
11.
Transfusion ; 60(4): 688-693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930726

RESUMO

BACKGROUND: Human immunoglobulin G (hIgG) includes four different subtypes (IgG1, IgG2, IgG3, and IgG4). Due to genetic variations, each IgG subtype contains different isoallotypes. It was previously shown that a Food and Drug Administration-approved monoclonal anti-IgG failed to recognize 2 of 15 recombinant, human IgG3 anti-Kell (K1) isoallotypes (rIgG3-03 and rIgG3-13) by indirect antiglobulin test (IAT). STUDY DESIGN AND METHODS: We expressed and purified 15 recombinant human rIgG3 anti-K1 isoallotypes and investigated their antigen binding and ability to induce phagocytosis using homozygous (KK) and heterozygous (Kk) K1-positive red blood cells (RBCs) by gel IAT, flow cytometry, and a monocyte monolayer assay (MMA) with peripheral blood monocytes and cultured inflammatory (M1) and anti-inflammatory (M2) macrophages. RESULTS: MMA results showed that differences in the Fc region of rIgG3 anti-K1 led to distinctive phagocytic activity with both monocytes and M1 macrophages. rIgG3-18 and rIgG3-19 showed an enhanced ability to induce phagocytosis. Differences in Fc regions also led to variations in the number of antibodies bound to KK RBCs. Despite the differences in phagocytic activity, all 15 rIgG3 clones are predicted to induce clinically significant hemolysis if K1-positive blood was transfused into patients. CONCLUSION: These results argue that antiglobulin reagents that fail to detect isoallotype rIgG3-03 or rIgG3-13 could present a transfusion risk or lack of detection of a potentially clinically significant anti-K1 in hemolytic disease of the fetus and newborn.


Assuntos
Imunoglobulina G/imunologia , Testes Imunológicos/normas , Sistema do Grupo Sanguíneo de Kell/imunologia , Fagocitose/imunologia , Antígenos/imunologia , Antígenos/metabolismo , Eritrócitos/imunologia , Hemólise/imunologia , Humanos , Alótipos de Imunoglobulina/imunologia , Isoanticorpos/imunologia
12.
Blood Adv ; 3(15): 2272-2285, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350307

RESUMO

Red blood cells (RBCs) are the most numerous cell type in the body and serve a vital purpose of delivering oxygen to essentially all tissues. In addition to the central role of RBCs in health and disease, RBC storage is a requirement for the >90 million units of RBC transfusions given to millions of recipients each year, worldwide. It is well known that there is genetic donor-to-donor variability in how human RBCs store, rendering blood a nonstandardized therapeutic with a wide range of biological properties from unit to unit, by the time it is transfused. As with humans, genetic variation exists in how murine RBCs, from different strains of mice, store and perform after transfusion. The genetic mechanisms for variation, in humans and mice, both remain obscure. Combining advanced metabolomics, genetics, and molecular and cellular biology approaches, we identify genetic variation in six-transmembrane epithelial antigen of prostate 3 (Steap3) expression as a critical and previously unrecognized mechanism of oxidative damage of RBCs during storage. Increased levels of Steap3 result in degradation of cellular membrane through lipid peroxidation, leading to failure of RBC homeostasis and hemolysis/clearance of RBCs. This article is the first report of a role of Steap3 in mature RBCs; it defines a new mechanism of redox biology in RBCs with a substantial effect upon RBC function and provides a novel mechanistic determinant of genetic variation of RBC storage.


Assuntos
Proteínas de Ciclo Celular/genética , Eritrócitos/metabolismo , Variação Genética , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Animais , Biomarcadores , Preservação de Sangue , Mapeamento Cromossômico , Eritrócitos/patologia , Regulação da Expressão Gênica , Genótipo , Metabolômica/métodos , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
13.
Curr Opin Hematol ; 25(6): 473-481, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30169458

RESUMO

PURPOSE OF REVIEW: Pathogenic autoantibodies directed against red blood cells (RBCs) may lead to autoimmune hemolytic anemia (AIHA), a severe and sometimes fatal disease. Much of what is known about the etiology and pathogenesis of AIHA has been learned from observations made in human patients and murine models, but many questions remain; importantly, it is still unclear why some people generate RBC-specific autoantibodies. The combination of technological advancements applied to existing models and the development of new AIHA murine models will continue to provide considerable insight into the initiation of AIHA and provide a platform for the design of more effective therapies. RECENT FINDINGS: Advancements in well described murine models of AIHA show that reticulocytes are preferentially targeted by anti-RBC autoantibodies and an increase in oxidative stress may trigger autoantibody production. Additionally, a new murine model of erythrocyte autoreactivity demonstrates that T cell tolerance is the stopgap for autoimmunity. Moreover, unlike many self-antigens, data suggest that RBC self-antigens are not presented in the thymus thereby escaping the scrutiny of T cell central tolerance mechanisms and placing emphasis on peripheral tolerance instead. Information gained from this new model provide novel insight into how the immune system responds to RBC autoantigens and provides a tractable platform to discover new therapies for AIHA. SUMMARY: Murine models of AIHA have provided significant understanding into the risk factors for AIHA. The application of new technologies and models of erythrocyte autoreactivity is a pathway with the potential to elucidate how tolerance to RBC autoantigens is established, maintained, and broken down.


Assuntos
Anemia Hemolítica Autoimune/imunologia , Modelos Animais de Doenças , Anemia Hemolítica Autoimune/tratamento farmacológico , Animais , Eritrócitos/imunologia , Linfócitos T/imunologia
14.
J Clin Pathol ; 71(6): 559-561, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550761

RESUMO

There are four subtypes of human IgG with different effector functions. Quantifying the relative amount of each IgG subtype is important for laboratory diagnosis in multiple settings. However, in an evolving landscape of the appreciation of human variability and the need for precision/personalised laboratory diagnosis, it has also been shown that there are numerous natural variants of IgG subtypes, with at least 29 having been described. It has recently been reported that commercially available polyclonal antisera to IgG3 cross react with variants of other IgG subtypes, while available monoclonal anti-IgG3 have a blind-spot for the IgG3-04 variant. Herein, we report that IgG3-04 contains an epitope in common with all known IgG3 variants and absent in other subtypes. A novel monoclonal anti-IgG3 is described that is specific to IgG3 but without any blind-spots for known IgG3 variants, providing a remedy to the problem of genetic variability of IgG3.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/genética , Epitopos/imunologia , Variação Genética , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Animais , Especificidade de Anticorpos , Reações Cruzadas , Humanos , Imunoglobulina G/classificação , Testes Imunológicos , Camundongos
15.
J Immunol Methods ; 455: 10-13, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395164

RESUMO

Methods designed to monitor humoral immune responses, in a variety of settings, typically use a broadly reactive detection reagent (e.g. polyclonal anti-Ig (immunoglobulin)) in order to characterize antibody responses. In the context of murine models of immunity, which are widely used, this would typically be antisera to mouse Ig or mouse IgG. However, there are 4 different subtypes of mouse IgG; thus, the validity of the above approach, as a general screen for humoral immune responses, depends upon the assumption that the antisera recognize all IgG subtypes. This seems like a reasonable assumption, since polyclonal antisera recognize multiple epitopes; however, herein we report that two commercial sources of goat anti-mouse Ig are hyporeactive with IgG3. Given that relative IgG3 levels are different in distinct types of immune response, these findings demonstrate a potential for misinterpretation, and suggest a need to modify immunological methods in this context.


Assuntos
Epitopos/metabolismo , Imunoglobulina G/metabolismo , Animais , Cabras , Humanos , Soros Imunes/imunologia , Imunidade Humoral , Switching de Imunoglobulina , Testes Imunológicos , Camundongos
16.
Front Immunol ; 8: 1366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163471

RESUMO

Autoimmune hemolytic anemia (AIHA) results from breakdown of humoral tolerance to RBC antigens. Past analyses of B-cell receptor transgenic (BCR-Tg) mice that recognize RBC autoantigens led to a paradigm in which autoreactive conventional B-2 B cells are deleted whereas extramedullary B-1 B cells escape deletion due to lack of exposure to RBCs. However, BCR-Tg mice utilized to shape the current paradigm were unable to undergo receptor editing or class-switching. Given the importance of receptor editing as mechanism to tolerize autoreactive B cells during central tolerance, we hypothesized that expansion of autoreactive B-1 B cells is a consequence of the inability of the autoreactive BCR to receptor edit. To test this hypothesis, we crossed two separate strains of BCR-Tg mice with transgenic mice expressing the BCR target on RBCs. Both BCR-Tg mice express the same immunoglobulin and, thus, secrete antibodies with identical specificity, but one strain (SwHEL) has normal receptor editing, whereas the other (IgHEL) does not. Similar to other AIHA models, the autoreactive IgHEL strain showed decreased B-2 B cells, an enrichment of B-1 B cells, and detectable anti-RBC autoantibodies and decreased RBC hematocrit and hemoglobin values. However, autoreactive SwHEL mice had induction of tolerance in both B-2 and B-1 B cells with anti-RBC autoantibody production without anemia. These data generate new understanding and challenge the existing paradigm of B cell tolerance to RBC autoantigens. Furthermore, these findings demonstrate that immune responses vary when BCR-Tg do not retain BCR editing and class-switching functions.

17.
Transfusion ; 57(11): 2657-2664, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28921569

RESUMO

BACKGROUND: Donor variability of red blood cell (RBC) storage has been observed in both humans and animal models. We utilized a strain of mice with RBCs known to store well (B6) and a strain known to store poorly (FVB) to test the hypothesis that RBCs affected the storage of other RBCs. STUDY DESIGN AND METHODS: Five strains of mice were used: 1) transgenic B6 mice expressing green fluorescent protein (GFP) in their RBCs (GFP.B6), 2) wild-type B6 mice, 3) wild-type FVB mice, 4) F1 crosses between GFP.B6 and FVB mice (GFP.F1), and 5) the analogous wild-type (B6xFVB) F1 cross. GFP.B6 or GFP.F1 RBCs were mixed with wild-type (non-GFP) RBCs from B6 or FVB strains before storage. Twenty-four-hour RBC recoveries were determined for stored RBCs by enumerating circulating GFP+ RBCs by flow cytometry. RESULTS: Twenty-four-hour recoveries of GFP.F1 RBCs was increased by co-storage with B6 RBCs but decreased by co-storage with FVB RBCs. This effect was dose dependent when tested with GFP.B6 RBCs; the more FVB blood added, the worse the 24-hour recoveries became. RBC cross-regulation did not occur when B6 and FVB RBCs were separated by a semipermeable membrane with a 0.4-µm size cutoff. CONCLUSION: These findings demonstrate that RBCs affect the storage of other RBCs, in both positive and negative directions, indicating not only that RBC storage is intrinsic to the RBC but that RBC-RBC communication occurs. Additional studies will be required to determine the nature of this effect and if these findings translate into human RBC storage.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/citologia , Animais , Comunicação Celular , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
18.
JCI Insight ; 2(13)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679954

RESUMO

In recent years, the extent of our vulnerability to misinterpretation due to poorly characterized reagents has become an issue of great concern. Antibody reagents have been identified as a major source of error, contributing to the "reproducibility crisis." In the current report, we define an additional dimension of the crisis; in particular, we define variation of the targets being analyzed. We report that natural variation in the immunoglobulin "constant" region alters the reactivity with commonly used subtype-specific anti-IgG reagents, resulting in cross-reactivity of polyclonal regents with inappropriate targets and blind spots of monoclonal reagents for desired targets. This raises the practical concern that numerous studies characterizing IgG subtypes in human disease may contain errors due to such previously unappreciated defects. These studies also focus attention on the broader concern that genetic variation may affect the performance of any laboratory or research test that uses antibodies for detection.

19.
MAbs ; 9(5): 767-773, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28463043

RESUMO

Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to FcγR-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse FcγRs is available. The orthologous mouse and human FcγRs share roughly 60-70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse FcγR. Human IgGs bound to mouse FcγR with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3>IgG1>IgG4>IgG2 and FcγRI>>FcγRIV>FcγRIII>FcγRIIb. This suggests human IgG subclasses to have similar relative FcγR-mediated biological activities in mice.


Assuntos
Imunoglobulina G/química , Receptores de IgG/química , Ressonância de Plasmônio de Superfície , Animais , Humanos , Camundongos
20.
Front Immunol ; 7: 348, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27698653

RESUMO

Autoimmune hemolytic anemia (AIHA) occurs when pathogenic autoantibodies against red blood cell (RBC) antigens are generated. While the basic disease pathology of AIHA is well studied, the underlying mechanism(s) behind the failure in tolerance to RBC autoantigens are poorly understood. Thus, to investigate the tolerance mechanisms required for the establishment and maintenance of tolerance to RBC antigens, we developed a novel murine model. With this model, we evaluated the role of regulatory T cells (Tregs) in tolerance to RBC-specific antigens. Herein, we show that neither sustained depletion of Tregs nor immunization with RBC-specific proteins in conjunction with Treg depletion led to RBC-specific autoantibody generation. Thus, these studies demonstrate that Tregs are not required to prevent autoantibodies to RBCs and suggest that other tolerance mechanisms are likely involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...