Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766096

RESUMO

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

2.
Biomater Adv ; 160: 213847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657288

RESUMO

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Colágeno , Combinação de Medicamentos , Células Epiteliais , Hidrogéis , Laminina , Peptídeos , Proteoglicanas , Laminina/farmacologia , Laminina/química , Hidrogéis/química , Hidrogéis/farmacologia , Proteoglicanas/farmacologia , Proteoglicanas/química , Colágeno/química , Colágeno/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Glândulas Mamárias Humanas/citologia , Organoides/efeitos dos fármacos , Organoides/citologia , Técnicas de Cultura de Células/métodos
3.
Heliyon ; 8(11): e11362, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387443

RESUMO

Epigenetic dysregulation is a key feature of most acute myeloid leukemia (AML). Recently, it has become clear that long noncoding RNAs (lncRNAs) can play a key role in epigenetic regulation, and consequently also dysregulation. Currently, our understanding of the requirements and roles of lncRNAs in AML is still limited. Here, using CRISPRi screening, we identified the lncRNA SGOL1-AS1 as an essential regulator of survival in THP-1 AML cells. We demonstrated that SGOL1-AS1 interacts with chromatin-modifying proteins involved in gene repression and that SGOL1-AS1 knockdown is associated with increased heterochromatin formation. We also observed that loss of SGOLl-AS1 results in increased apoptosis and the downregulation of pro-inflammatory genes. In AML patients, high expression of SGOL1-AS1 correlates with both pro-inflammatory gene expression and poor survival. Altogether, our data reveal that SGOL1-AS1 is an essential regulator of cell survival in AML cell lines and a possible regulator of pro-inflammatory signaling in AML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...