Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1348973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371296

RESUMO

Introduction: Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods: In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results: S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion: The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.


Assuntos
Aeromonas , Staphylococcus aureus Resistente à Meticilina , Smegmamorpha , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Aeromonas hydrophila/genética , Estudos Transversais , Antibacterianos/farmacologia , Peixes , Amoxicilina , Fatores de Risco , Água , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia
2.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397853

RESUMO

In this study, a biodegradable poly-gamma-glutamic-acid nanopolymer (Ɣ-PGA NP) was investigated for its activity against clinical strains of Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli), and reference strains of S. aureus ATCC 6538, S. pyogenes ATCC 19615 (Gram-positive), and Gram-negative E. coli ATCC 25922, and K. pneumoniae ATCC 13884 bacterial biofilms. The minimum inhibitory concentration (MIC) effect of Ɣ-PGA NP showed inhibitory effects of 0.2, 0.4, 1.6, and 3.2 µg/mL for S. pyogenes, S. aureus, E. coli, and K. pneumoniae, respectively. Also, MIC values were 1.6, 0.8, 0.2, and 0.2 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Afterwards, MBEC (minimum biofilm eradication concentration) and MBIC (minimum biofilm inhibitory concentration) were investigated to detect Ɣ-PGA NPs efficiency against the biofilms. MBEC and MBIC increased with increasing Ɣ-PGA NPs concentration or time of exposure. Interestingly, MBIC values were at lower concentrations of Ɣ-PGA NPs than those of MBEC. Moreover, MBEC values showed that K. pneumoniae was more resistant to Ɣ-PGA NPs than E. coli, S. aureus, and S. pyogenes, and the same pattern was observed in the reference strains. The most effective results for MBEC were after 48 h, which were 1.6, 0.8, 0.4, and 0.2 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. Moreover, MBIC results were the most impactful after 24 h but some were the same after 48 h. MBIC values after 48 h were 0.2, 0.2, 0.2, and 0.1 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. The most effective results for MBEC were after 24 h, which were 1.6, 0.8, 0.4, and 0.4 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Also, MBIC results were the most impactful after an exposure time of 12 h. MBIC values after exposure time of 12 h were 0.4, 0.4, 0.2, and 0.2 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Besides that, results were confirmed using confocal laser scanning microscopy (CLSM), which showed a decrease in the number of living cells to 80% and 60% for MBEC and MBIC, respectively, for all the clinical bacterial strains. Moreover, living bacterial cells decreased to 70% at MBEC while decreasing up to 50% at MBIC with all bacterial refence strains. These data justify the CFU quantification. After that, ImageJ software was used to count the attached cells after incubating with the NPs, which proved the variation in live cell count between the manual counting and image analysis methods. Also, a scanning electron microscope (SEM) was used to detect the biofilm architecture after incubation with the Ɣ-PGA NP. In in vivo wound healing experiments, treated wounds of mice showed faster healing (p < 0.00001) than both the untreated mice and those that were only wounded, as the bacterial count was eradicated. Briefly, the infected mice were treated faster (p < 0.0001) when infected with S. pyogenes > S. aureus > E. coli > K. pneumoniae. The same pattern was observed for mice infected with the reference strains. Wound lengths after 2 h showed slightly healing (p < 0.001) for the clinical strains, while treatment became more obvious after 72 h > 48 h > 24 h (p < 0.0001) as wounds began to heal after 24 h up to 72 h. For reference strains, wound lengths after 2 h started to heal up to 72 h.

3.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276766

RESUMO

Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.

4.
Pest Manag Sci ; 80(3): 1279-1288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897195

RESUMO

BACKGROUND: To address the challenges of food security for the ever-increasing population, the emergence of nanotechnology provides an alternate technology of choice for the production of safer pesticides which serves as a substitute for conventional fertilizer. The antidrug resistance of Xanthomonas oryzae pv. oryzae (Xoo) and build-up of chemicals in the environment has made it necessary to find alternative safe techniques for effective disease management. Hence, in this study, copper oxide nanoparticles (CuONPs) were produced by green synthesis using a Hibiscus rosa-sinensis L. flower extract. RESULTS: The characterization of CuONPs using ultraviolet-visible spectrophotometry, scanning electron microscopy with an energy-dispersive spectrum profile, Fourier transform infrared spectroscopy, and X-ray diffraction ascertained the presence of CuONPs, which were nanorods of 28.1 nm. CuONPs significantly obstructed the growth and biofilm development of Xoo by 79.65% and 79.17% respectively. The antibacterial mechanism of CuONPs was found to result from wounding the cell membrane, giving rise to an exodus of intracellular content and generation of oxidative reactive oxygen species that invariably inhibited Xoo respiration and growth. A toxicity study under greenhouse conditions revealed that CuONPs significantly increased growth variables and the biomass of rice, and reduced bacterial leaf blight. Application of CuONPs on Arabidopsis improved the chlorophyll fluorescence parameters; the ΦPSII was significantly increased by 152.05% in comparison to the control. CONCLUSION: Altogether, these results suggest that CuONPs in low concentration (200.0 µg mL-1 ) are not toxic to plants and can serve as nano-fertilizers and nano-pesticides. © 2023 Society of Chemical Industry.


Assuntos
Nanopartículas , Oryza , Xanthomonas , Cobre/farmacologia , Nanopartículas/química , Bactérias , Antibacterianos/farmacologia , Óxidos/farmacologia
6.
Microorganisms ; 11(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37894164

RESUMO

Salmonella spp. is considered one of the most important causes of food-borne illness globally. Poultry and its products are usually incriminated in its spread. Treatment with antibiotics is the first choice to deal with such cases; however, multi-drug resistance and biofilm formation have been recorded in animals and humans. This study aimed to detect the antibiotic profile of isolated traits from different sources and to find innovative alternatives, such as MOFs. A total of 350 samples were collected from randomly selected retailed poultry shops in Beni-Suef Province, Egypt. Their antimicrobial susceptibility against eight different antibiotics was tested, and multi-drug resistance was found in most of them. Surprisingly, promising results toward MOF were detected. Cu/Ni/Co-MOF (MOF3) showed superior antibacterial efficiency to Cu/Ni-MOF (MOF2) and Cu-MOF (MOF1) at p value ≤ 0.01. These findings highlight the tendency of Salmonella spp. to develop MDR to most of the antibiotics used in the field and the need to find new alternatives to overcome it, as well as confirming the ability of the environment to act as a source of human and animal affection.

7.
Biomedicines ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760826

RESUMO

Prostate cancer treatment poses significant challenges due to its varying aggressiveness, potential for metastasis, and the complexity of treatment options. Balancing the effectiveness of therapies, minimizing side effects, and personalizing treatment strategies are ongoing challenges in managing this disease. Significant advances in the use of nanotechnology for the treatment of prostate cancer with high specificity, sensitivity, and efficacy have recently been made. This study aimed to synthesize and characterize a novel Cu/Fe layer double hydroxide (LDH) nanocomposite for use as an anticancer agent to treat prostate cancer. Cu/Fe LDH nanocomposites with a molar ratio of 5:1 were developed using a simple co-precipitation approach. FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses confirmed the nanocomposite. Moreover, the MTT cell viability assay, scratch assay, and flow cytometry were utilized to examine the prospective anticancer potential of Cu/Fe LDH on a prostate cancer (PC-3) cell line. We found that Cu/Fe LDH reduced cell viability, inhibited cell migration, induced G1/S phase cell cycle arrest, and triggered apoptotic effect in prostate cancer cells. The findings also indicated that generating reactive oxygen species (ROS) formation could improve the biological activity of Cu/Fe LDH. Additionally, Cu/Fe LDH showed a good safety impact on the normal lung fibroblast cell line (WI-38). Collectively, these findings demonstrate that the Cu/Fe LDH nanocomposite exhibited significant anticancer activities against PC-3 cells and, hence, could be used as a promising strategy in prostate cancer treatment.

8.
ACS Omega ; 8(35): 32027-32042, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692252

RESUMO

Excessive use of antimicrobial medications including antibiotics has led to the emerging menace of antimicrobial resistance, which, as per the World Health Organization (WHO), is among the top ten public health threats facing humanity, globally. This necessitates that innovative technologies be sought that can aid in the elimination of pathogens and hamper the spread of infections. Zinc oxide (ZnO) has multifunctionality owing to its extraordinary physico-chemical properties and functionality in a range of applications. In this research, ZnO nanoparticles (NPs) were synthesized from zinc nitrate hexahydrate, by a green synthesis approach using Cymbopogon citratus extract followed by characterization of the NPs. The obtained X-ray diffraction peaks of ZnO NPs matched with the standard JCPDS card (no. 89-510). The particles had a size of 20-24 nm, a wurtzite structure with a high crystallinity, and hexagonal rod-like shape. UV-Vis spectroscopy revealed absorption peaks between 369 and 374 nm of ZnO NPs synthesized from C. citratus extract confirming the formation of ZnO. Fourier transform infrared confirmed the ZnO NPs as strong absorption bands were observed in the range of 381-403 cm-1 corresponding to Zn-O bond stretching. Negative values of the highest occupied molecular orbital-lowest unoccupied molecular orbital for ZnO NPs indicated the good potential to form a stable ligand-protein complex. Docking results indicated favorable binding interaction between ZnO and DNA gyrase subunit b with a binding energy of -2.93 kcal/mol. ZnO NPs at various concentrations inhibited the growth of Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration values of ZnO NPs against E. coli and S. aureus were found to be 92.07 ± 0.13 and 88.13 ± 0.35 µg/mL, respectively, at a concentration of 2 mg/mL. AO/EB staining and fluorescence microscopy revealed the ability of ZnO NPs to kill E. coli and S. aureus cells. Through the findings of this study, it has been shown that C. citratus extract can be used in a green synthesis approach to generate ZnO NPs, which can be employed as alternatives to antibiotics and a tool to eliminate drug-resistant microbes in the future.

9.
Environ Toxicol Pharmacol ; 103: 104262, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699441

RESUMO

Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.

10.
Front Plant Sci ; 14: 1216782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655220

RESUMO

Introduction: Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods: During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions: The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 µg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 µg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions: The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.

11.
Front Microbiol ; 14: 1193206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396367

RESUMO

Introduction: Xanthomonas oryzae pv. oryzae (Xoo) is the plant pathogen of Bacterial Leaf Blight (BLB), which causes yield loss in rice. Methods: In this study, the lysate of Xoo bacteriophage X3 was used to mediate the bio-synthesis of MgO and MnO2. The physiochemical features of MgONPs and MnO2NPs were observed via Ultraviolet - Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), Energy dispersive spectrum (EDS), and Fourier-transform infrared spectrum (FTIR). The impact of nanoparticles on plant growth and bacterial leaf blight disease were evaluated. Chlorophyll fluorescence was used to determine whether the nanoparticles application were toxic to the plants. Results: An absorption peak of 215 and 230 nm for MgO and MnO2, respectively, confirmed nanoparticle formation via UV-Vis. The crystalline nature of the nanoparticles was detected by the analysis of XRD. Bacteriological tests indicated that MgONPs and MnO2NPs sized 12.5 and 9.8 nm, respectively, had strong in vitro antibacterial effects on rice bacterial blight pathogen, Xoo. MnO2NPs were found to have the most significant antagonist effect on nutrient agar plates, while MgONPs had the most significant impact on bacterial growth in nutrient broth and on cellular efflux. Furthermore, no toxicity to plants was observed for MgONPs and MnO2NPs, indeed, MgONPs at 200 µg/mL significantly increased the quantum efficiency of PSII photochemistry on the model plant, Arabidopsis, in light (ΦPSII) compared to other interactions. Additionally, significant suppression of BLB was noted in rice seedlings amended with the synthesized MgONPs and MnO2NPs. MnO2NPs showed promotion of plant growth in the presence of Xoo compared to MgONPs. Conclusion: An effective alternative for the biological production of MgONPs and MnO2NPs was reported, which serves as an effective substitute to control plant bacterial disease with no phytotoxic effect.

12.
Front Cell Infect Microbiol ; 13: 1134802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293206

RESUMO

There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T , Epitopos de Linfócito B , Peptídeos , Vacinas de Subunidades Antigênicas , Aminoácidos , Endopeptidases , Biologia Computacional
13.
Microorganisms ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317108

RESUMO

Fungi were used as one of the most common bioremediation methods. From this perspective, our study highlights the optimization of Alizarin Red S (ARS) dye adsorption performance for the sodium alginate (SA) by using the fungus Aspergillus terreus (A. terreus) to form a composite bead and the possibility of its reusability. This was accomplished by mixing SA with different ratios of biomass powder of A. terreus, including 0%, 10%, 20%, 30%, and 40%, to form composite beads of A. terreus/SA-0%, A. terreus/SA-10%, A. terreus/SA-20%, A. terreus/SA-30%, and A. terreus/SA-40%, respectively. The ARS adsorption characteristics of these composite mixtures were analyzed at various mass ratios, temperatures, pH values, and initial concentrations. Moreover, sophisticated techniques, such as scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), were employed to detect the morphological and chemical properties of this composite, respectively. The experimental results revealed that A. terreus/SA-20% composite beads have the highest adsorption capacity of 188 mg/g. Its optimum adsorption conditions were achieved at 45 ∘C and pH 3. Moreover, the ARS adsorption was well explained by the Langmuir isotherm (qm = 192.30 mg/g) and pseudo-second-order and intra-particle diffusion kinetics. The SEM and FTIR findings corroborated the superior uptake of A. terreus/SA-20% composite beads. Lastly, the A. terreus/SA-20% composite beads can be employed as an eco-friendly and sustainable alternative to other common adsorbents for ARS.

14.
Curr Microbiol ; 80(8): 261, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368149

RESUMO

A bacterial strain, designated TRPH29T, was isolated from saline-alkaline soil, collected from the southern edge of the Gurbantunggut desert, Xinjiang, People's Republic of China. The isolate was Gram-staining positive, facultatively anaerobic, straight rods. Growth occurred at 15-40 °C (optimum, 28 °C), pH 8.0-13.0 (optimum, 10.0), and in the presence of 0-15% (w/v) NaCl (optimum, 2%). Phylogenetic analysis using 16S rRNA gene sequence indicated that strain TRPH29T showed the highest sequence similarities to Alkalihalobacillus krulwichiae (98.31%), Alkalihalobacillus wakoensis (98.04%), and Alkalihalobacillus akibai (97.69%). Average nucleotide identity (ANI) and digital DNA-DNA hybridization values between strain TRPH29T and Alkalihalobacillus krulwichiae, Alkalihalobacillus wakoensis, Alkalihalobacillus akibai were in the range of 73.62-75.52% and 15.0-21.20%, respectively. Results of genome analyses indicated that the genome size of strain TRPH29T was 5.05 Mb, with a genomic DNA G + C content of 37.30%. Analysis of the cellular component of strain TRPH29T revealed that the primary fatty acids were anteiso-C15:0 and iso-C15:0, and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid, and an unidentified phospholipid. The predominant respiratory quinone was MK-7. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain TRPH29T represents a novel species of the genus Alkalihalobacillus, for which the name Alkalihalobacillus deserti sp. nov. is proposed. The type strain is TRPH29T (= CGMCC 1.19067T = NBRC 115475T).


Assuntos
Bacillaceae , Fosfolipídeos , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Fosfolipídeos/química , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana , Microbiologia do Solo
15.
Biomedicines ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189672

RESUMO

A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.

16.
Sci Rep ; 13(1): 7227, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142660

RESUMO

Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Óxido Ferroso-Férrico , Escherichia coli , Staphylococcus aureus , Metais Pesados/química , Ferro/análise , Água , Antibacterianos/química , Nanopartículas Magnéticas de Óxido de Ferro , Adsorção , Cinética , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
17.
Artigo em Inglês | MEDLINE | ID: mdl-37074141

RESUMO

A novel orange-coloured bacterium, designated strain SYSU D00508T, was isolated from a sandy soil sampled from the Kumtag Desert in China. Strain SYSU D00508T was aerobic, Gram-stain-negative, oxidase-positive, catalase-positive and non-motile. Growth occurred at 4-45°C (optimum 28-30°C), pH 6.0-9.0 (optimum pH 7.0-8.0) and with 0-2.5 % NaCl (w/v, optimum 0-1.0 %). The major polar lipids consisted of phosphatidylethanolamine (PE), unidentified aminolipids (AL1-3) and unidentified polar lipids (L1-5) were also detected. The major respiratory quinone was MK-7 and the major fatty acids (>10 %) were iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 G. The genomic DNA G+C content was 42.6 %. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU D00508T belonged to the family Chitinophagaceae and showed 93.9 % (Segetibacter koreensis DSM18137T), 92.9 % (Segetibacter aerophilus NBRC 106135T), 93.0 % (Terrimonas soli JCM 32095T) and 92.8 % (Parasegetibacter terrae JCM 19942T) similarities. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain SYSU D00508T is proposed to represent a novel species of a new genus, named Aridibaculum aurantiacum gen. nov., sp. nov., within the family Chitinophagaceae. The type strain is SYSU D00508T (=KCTC 82286T=CGMCC 1.18648T=MCCC 1K05005T).


Assuntos
Ácidos Graxos , Microbiologia do Solo , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
18.
J Fungi (Basel) ; 9(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983550

RESUMO

Mycoremediation is one of the most attractive, eco-friendly, and sustainable methods to mitigate the toxic effects of heavy metals. This study aimed to determine the mycoremediation capacity of metallophilic fungi isolated from heavy-metal-contaminated soil containing a high Fe(III) concentration (118.40 mg/kg). Four common fungal strains were isolated, including Curvularia lunata, Fusarium equiseti, Penicillium pinophilum, and Trichoderma harzianum. These fungal strains were exposed to gradually increasing concentrations of Fe(III) of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 mg/L. Sophisticated techniques and tests were employed to investigate the mycoremediation capability, including tolerance index (TI), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and adsorption isotherm. Furthermore, the impacts of initial concentration, pH, and temperature on the Fe(III) removal (%) and uptake capacity (mg/g) of the studied samples were investigated. The results were validated by statistical analysis using one-way ANOVA. It was found that the Fe(III) uptake with different ratios triggered alterations in the Fe(III) tolerance (TI) morphological (SEM), chemical (FTIR), and adsorption capacity properties. The highest Fe(III) tolerance for all studied fungal strains was achieved at 100 mg/L. Moreover, the optimum conditions of Fe(III) removal (%) for all studied fungal strains were within pH 7 and 28 °C, with similar performance at the initial Fe(III) concentration ranging from 50-200 mg/L. At the same time, the maximum Fe(III) uptake was achieved at pH 7, 20 °C, and 200 mg/L. Compared to other strains, the Fe(III) tolerance of T. harzianum was rise in the Fe(III) concentration. The Fe(III) uptake reaction was corroborated by best fitting with the Langmuir model, achieving optimum adsorption capacities of 61.34, 62.90, 63.30, and 72.46 mg/g for C.lunata, F. equiseti, P. pinophilum, T. harzianum, respectively. It can be deduced that the addressed fungi species can be applied in mycoremediation according to the utilized Fe(III) concentrations with more superiority for live T. harzianum.

19.
Microorganisms ; 11(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838433

RESUMO

The impact of climate change on biodiversity has been the subject of numerous research in recent years. The multiple elements of climate change are expected to affect all levels of biodiversity, including microorganisms. The common worldwide fungus Fusarium oxysporum colonizes plant roots as well as soil and several other substrates. It causes predominant vascular wilt disease in different strategic crops such as banana, tomato, palm, and even cotton, thereby leading to severe losses. So, a robust maximum entropy algorithm was implemented in the well-known modeling program Maxent to forecast the current and future global distribution of F. oxysporum under two representative concentration pathways (RCPs 2.6 and 8.5) for 2050 and 2070. The Maxent model was calibrated using 1885 occurrence points. The resulting models were fit with AUC and TSS values equal to 0.9 (±0.001) and 0.7, respectively. Increasing temperatures due to global warming caused differences in habitat suitability between the current and future distributions of F. oxysporum, especially in Europe. The most effective parameter of this fungus distribution was the annual mean temperature (Bio 1); the two-dimensional niche analysis indicated that the fungus has a wide precipitation range because it can live in both dry and rainy habitats as well as a range of temperatures in which it can live to certain limits. The predicted shifts should act as an alarm sign for decision makers, particularly in countries that depend on such staple crops harmed by the fungus.

20.
Animal ; 17(1): 100696, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587589

RESUMO

Some studies have suggested that dietary medicinal plants or herbs may have a variety of biological functions such as anti-inflammatory, antiallergic, antifungal, antioxidative stress, and anticarcinogenic activities. The present study was undertaken to assess the incorporation of the extract of licorice supplementation on the growth performance, carcass yield, blood indices, and antioxidative capacity in broilers. Three hundred twenty unsexed one-day-old Ross 308 broiler chicks were allocated randomly into four groups. Chicks in each group were randomly subdivided into eight replicates of ten chicks. The first group received a basal diet and was considered a control. The respective groups received a basal diet supplemented with 1, 2, and 3 g licorice extract/kg diet. The obtained results indicated that supplementation of licorice extract to broiler chicks resulted in heavier BW and weight gain and a better feed conversion ratio during the experimental periods compared with the control group. However, feed consumption increased during the entire growing period. Supplementing the broiler's diet with licorice extract led to a higher value of erythrocytes, leukocytes, haemoglobin, plasma total protein, albumin, and antioxidant concentration and a low value in plasma cholesterol, triglycerides, uric acid, urea, and total cholesterol. It could be concluded that the dietary addition of licorice extracts 2 and 3 g licorice extract/kg diet improved broiler chicks' growth performance and physiological status.


Assuntos
Antioxidantes , Glycyrrhiza , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais , Dieta/veterinária , Glycyrrhiza/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...