Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213907

RESUMO

This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.

2.
J Microencapsul ; 34(3): 243-249, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28635414

RESUMO

This work is focused on preparation of novel porous type of core-shell-structured microparticles based on polylactide (shell) and poly(vinyl alcohol) cross-linked with glutaric acid (GA) (core) prepared by water-in-oil-in-water solvent evaporation technique. The microparticle systems were used as delivery systems for immobilisation of model antibacterial agent - nisin. The effect of cross-linking and the initial amount of nisin on their morphology was investigated using scanning electron microscopy, BET analysis, zeta potential measurement and Fourier transform infra-red spectroscopy. Encapsulation efficiency and release profile of nisin from the microparticles were studied by high performance liquid chromatography. Antibacterial activity of the prepared systems was tested by dilution and spread plate technique. Results showed the microparticles in the size range of 9-16 µm in diameter with spherical multi-hollow core-shell structure. The presence of cross-linking agent GA influences the release profile of the peptide and has synergistic effect on Listeria monocytogenes growth reduction.


Assuntos
Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Nisina/administração & dosagem , Poliésteres/química , Álcool de Polivinil/química , Glutaratos/química , Listeria monocytogenes/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...