Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(19): 14426-14447, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34550687

RESUMO

The recent approval of aducanumab for Alzheimer's disease has heightened the interest in therapies targeting the amyloid hypothesis. Our research has focused on identification of novel compounds to improve amyloid processing by modulating gamma secretase activity, thereby addressing a significant biological deficit known to plague the familial form of the disease. Herein, we describe the design, synthesis, and optimization of new gamma secretase modulators (GSMs) based on previously reported oxadiazine 1. Potency improvements with a focus on predicted and measured properties afforded high-quality compounds further differentiated via robust Aß42 reductions in both rodents and nonhuman primates. Extensive preclinical profiling, efficacy studies, and safety studies resulted in the nomination of FRM-024, (+)-cis-5-(4-chlorophenyl)-6-cyclopropyl-3-(6-methoxy-5-(4-methyl-1H-imidazole-1-yl)pyridin-2-yl)-5,6-dihydro-4H-1,2,4-oxadiazine, as a GSM preclinical candidate for familial Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/metabolismo , Descoberta de Drogas , Inibidores e Moduladores de Secretases gama/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Área Sob a Curva , Cães , Inibidores e Moduladores de Secretases gama/farmacocinética , Meia-Vida , Haplorrinos , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Ratos
2.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34301719

RESUMO

Here, we report the independent discovery and validation of stearoyl-CoA desaturase (SCD) as a modulator of α-synuclein (αSyn)-induced pathology and toxicity in cell-based Parkinson's disease (PD) models. We identified SCD as top altered gene from transcriptional profiling in primary neurons exogenously expressing αSyn with the amplified familial PD mutation 3K. Thus, we sought to further explore SCD as a therapeutic target in neurodegeneration. We report that SCD inhibitors are toxic to early human and rat neuron cultures while displaying minimal toxicity to late cultures. The fatty acid product of SCD, oleic acid (OLA), fully rescues this toxicity in early cultures, suggesting on-target toxicity. Furthermore, SCD inhibition rescues αSyn 3K-induced toxicity in late primary neurons. We also confirm that SCD inhibitors reduce formation of αSyn accumulations, while OLA increases these accumulations in an αSyn 3K neuroblastoma model. However, we identify a caveat with this model where αSyn 3K levels can be suppressed by high SCD inhibitor concentrations, obscuring true effect size. Further, we show that both SCD1 or SCD5 knock-down reduce αSyn 3K accumulations and toxicity, making both a putative drug target. Overall, we confirm key findings of published data on SCD inhibition and its benefits in αSyn accumulation and stress models. The differential neurotoxicity induced by SCD inhibition based on neuron culture age must be accounted for when researching SCD in neuron models and has potential clinical implications. Lastly, our gene profiling studies also revealed novel putative genes connected to αSyn neurotoxicity that are worth further study.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Neurônios , Ratos , Estearoil-CoA Dessaturase/genética , alfa-Sinucleína/genética
3.
J Alzheimers Dis ; 57(1): 135-145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222530

RESUMO

Secreted soluble amyloid-ß 1-37 (Aß37) peptide is one of the prominent Aß forms next to Aß40, and is found in cerebrospinal fluid (CSF) and blood. Recent studies have shown the importance of quantitation of CSF Aß37 levels in combination with Aß38, Aß40, and Aß42 to support the diagnosis of patients with probable Alzheimer's disease (AD), and the value of antibody to Aß37 to facilitate drug discovery studies. However, the availability of reliable and specific monoclonal antibody to Aß37 is very limited. Our aims were: 1) to generate and partially characterize rabbit monoclonal antibody (RabmAb) to Aß37, and 2) to determine whether the antibody detects changes in Aß37 levels produced by a γ-secretase modulator (GSM). Our generated RabmAb to Aß37 was found to be specific to Aß37, since it did not react with Aß36, Aß38, Aß39, Aß40, and Aß42 in an ELISA or immunoblotting. The epitope of the antibody was contained in the seven C-terminal residues of Aß37. The antibody was sensitive enough to measure CSF and plasma Aß37 levels in ELISA. Immunohistological studies showed the presence of Aß37-positive deposits in the brain of AD, and Down syndrome persons diagnosed with AD. Our studies also showed that the antibody detected Aß37 increases in CSF and brains of rodents following treatment with a GSM. Thus, our antibody can be widely applied to AD research, and in a panel based approach it may have potential to support the diagnosis of probable AD, and in testing the effect of GSMs to target AD.


Assuntos
Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/imunologia , Fragmentos de Peptídeos/imunologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização , Immunoblotting , Imuno-Histoquímica , Pessoa de Meia-Idade , Coelhos , Sensibilidade e Especificidade
4.
J Med Chem ; 60(6): 2383-2400, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230986

RESUMO

Herein we describe the design, synthesis, and evaluation of a novel series of oxadiazine-based gamma secretase modulators obtained via isosteric amide replacement and critical consideration of conformational restriction. Oxadiazine lead 47 possesses good in vitro potency with excellent predicted CNS drug-like properties and desirable ADME/PK profile. This lead compound demonstrated robust Aß42 reductions and subsequent Aß37 increases in both rodent brain and CSF at 30 mg/kg dosed orally.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Desenho de Fármacos , Oxazinas/química , Oxazinas/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Humanos , Macaca fascicularis , Camundongos , Oxazinas/farmacocinética , Fragmentos de Peptídeos/metabolismo , Ratos Wistar
5.
Alzheimers Res Ther ; 8: 34, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572246

RESUMO

BACKGROUND: Familial Alzheimer's disease (FAD) is caused by mutations in the amyloid precursor protein (APP) or presenilin (PS). Most PS mutations, which account for the majority of FAD cases, lead to an increased ratio of longer to shorter forms of the amyloid beta (Aß) peptide. The therapeutic rationale of γ-secretase modulators (GSMs) for Alzheimer's disease is based on this genetic evidence as well as on enzyme kinetics measurements showing changes in the processivity of the γ-secretase complex. This analysis suggests that GSMs could potentially offset some of the effects of PS mutations on APP processing, thereby addressing the root cause of early onset FAD. Unfortunately, the field has generated few, if any, molecules with good central nervous system (CNS) drug-like properties to enable proof-of-mechanism studies. METHOD: We characterized the novel GSM FRM-36143 using multiple cellular assays to determine its in vitro potency and off-target activity as well as its potential to reverse the effect of PS mutations. We also tested its efficacy in vivo in wild-type mice and rats. RESULTS: FRM-36143 has much improved CNS drug-like properties compared to published GSMs. It has an in vitro EC50 for Aß42 of 35 nM in H4 cells, can reduce Aß42 to 58 % of the baseline in rat cerebrospinal fluid, and also increases the non-amyloidogenic peptides Aß37 and Aß38. It does not inhibit Notch processing, nor does it inhibit 24-dehydrocholesterol reductase (DHCR24) activity. Most interestingly, it can reverse the effects of presenilin mutations on APP processing in vitro. CONCLUSIONS: FRM-36143 possesses all the characteristics of a GSM in terms of Aß modulation Because FRM-36143 was able to reverse the effect of PS mutations, we suggest that targeting patients with this genetic defect would be the best approach at testing the efficacy of a GSM in the clinic. While the amyloid hypothesis is still being tested with ß-site APP-cleaving enzyme inhibitors and monoclonal antibodies in sporadic AD, we believe it is not a hypothesis for FAD. Since GSMs can correct the molecular defect caused by PS mutations, they have the promise to provide benefits to the patients when treated early enough in the course of the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Nootrópicos/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Mutação , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Nootrópicos/farmacocinética , Nootrópicos/toxicidade , Presenilina-1/genética , Presenilina-1/metabolismo , Ratos Wistar
6.
Mol Neurodegener ; 7: 61, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23249765

RESUMO

BACKGROUND: A hallmark of Alzheimer's disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aß42 and Aß40. Many drug discovery efforts have focused on decreasing the production of Aß42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aß production to favor shorter, less amyloidogenic peptides than Aß42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer's disease. RESULTS: Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aß42 in H4 cells (IC50 = 67 nM) and increased the shorter Aß38 by 1.7 fold at the IC50 for lowering of Aß42. AßTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aß42 and did not alter AßTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aß deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aß aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. CONCLUSIONS: EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aß42, attenuated memory deficits, and reduced Aß plaque formation and inflammation in Tg2576 transgenic animals. In summary, these data suggest that γ-secretase modulation with EVP-0015962 represents a viable therapeutic alternative for disease modification in Alzheimer's disease.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Fenilpropionatos/farmacologia , Propionatos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Transfecção
7.
Chem Biol ; 18(6): 777-93, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21700213

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion within Huntingtin (Htt) protein. In the phenotypic screen we identified a class of quinazoline-derived compounds that delayed a progression of a motor phenotype in transgenic Drosophila HD flies. We found that the store-operated calcium (Ca(2+)) entry (SOC) pathway activity is enhanced in neuronal cells expressing mutant Htt and that the identified compounds inhibit SOC pathway in HD neurons. The same compounds exerted neuroprotective effects in glutamate-toxicity assays with YAC128 medium spiny neurons primary cultures. We demonstrated a key role of TRPC1 channels in supporting SOC pathway in HD neurons. We concluded that the TRPC1-mediated neuronal SOC pathway constitutes a novel target for HD treatment and that the identified compounds represent a novel class of therapeutic agents for treatment of HD and possibly other neurodegenerative disorders.


Assuntos
Cálcio/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Éteres Fenílicos/química , Quinazolinas/química , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Fura-2/química , Ácido Glutâmico/farmacologia , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Éteres Fenílicos/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...