Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655417

RESUMO

We previously reported NO/sGC signaling in the upper respiratory pathway, receiving input from the respiratory neurons of the brainstem to phrenic motoneurons in the C3-C6 spinal cord. In order to assess whether innervation of the neuromuscular junction (NMJ) at the diaphragm is modulated by sGC/cGMP signaling, we performed unilateral 8-day continuous ligation of the phrenic nerve in rats. We examined sGCß1 within the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm) and the cGMP level in the contra- and ipsilateral hemidiaphragm. Additionally, we characterized the extent of phrenic nerve axonal degeneration and denervation at diaphragm NMJs. The results of our study show that continuous 8-day phrenic nerve ligation caused a marked increase in sGCß1 (immunoreactivity and the protein level) in the ipsilateral phrenic motor pool. However, the protein sGCß1 level in the phrenic nerve below its ligation and the cGMP level in the ipsilateral hemidiaphragm were evidently decreased. Using confocal analysis we discovered a reduction in sGCß1-IR boutons/synaptic vesicles at the ipsilateral MNJs. These findings are consistent with the marked axonal loss (∼47%) and significant NMJs degeneration in the ipsilateral diaphragm muscle. The remarkable unilateral decrease in cGMP level in the diaphragm and the failure of EMG recordings in the ipsilateral hemidiaphragm muscle can be attributed to the fact that sGC is involved in transmitter release at the diaphragm NMJs via the sGC-cGMP pathway.

2.
Brain Res ; 1396: 1-10, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21561603

RESUMO

A prolonged exposure to vibration stimuli triggers pathological changes with many later manifested symptoms. Early vibration-induced changes are still not very well explored. Therefore, short 30 min vibration period per day with frequency 60 Hz repeated for 10 days was used, and the retrograde axonal transport from the sciatic nerve, the expression of calcitonin gene-related peptide (CGRP) and parvalbumin (PV) were studied in the dorsal root ganglia (DRGs) corresponding to lower lumbar spinal levels. Repeated vibration markedly decreased (25 and 34%) the accumulation of retrogradely transported Fluorogold to spinal motor neurons, whereas a significant increase (35 and 25%) was seen in the DRG primary sensory neurons corresponding to the L4 and L5 spinal level. Immunohistochemical studies showed a significant reduction of CGRP-positive small-sized neuronal cells in both DRGs. Fluoro-Jade labeling revealed that marked loss of CGRP-imunoreactive DRG sensory neurons is not due to neuronal degeneration. CGRP protein expression determined by Western blot analysis and optical density measurement, and NGF level measured by ELISA have been decreased, markedly only at the L4 DRG. PV protein expression was not affected by short repeated vibrations. Our results indicate that (a) short-lasting repeated vibrations affect the retrograde axonal transport in the DRG sensory neurons differently than in spinal motor neurons; (b) a decreased NGF-dependent CGRP production in the DRG primary sensory neurons plays an important role in early vibration-induced pathological mechanisms.


Assuntos
Transporte Axonal/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/metabolismo , Parvalbuminas/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Vibração/efeitos adversos , Animais , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Gânglios Espinais/fisiopatologia , Vértebras Lombares , Masculino , Neurônios Motores/metabolismo , Fator de Crescimento Neural/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Wistar , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA