Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Pineal Res ; 76(4): e12962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775315

RESUMO

There is a need to develop therapies for neonatal encephalopathy (NE) in low- and middle-income countries (LMICs) where the burden of disease is greatest and therapeutic hypothermia (HT) is not effective. We aimed to assess the efficacy of melatonin following inflammation-amplified hypoxia-ischaemia (IA-HI) in the newborn piglet. The IA-HI model accounts for the contribution of infection/inflammation in this setting and HT is not cytoprotective. We hypothesised that intravenous melatonin (5% ethanol, at 20 mg/kg over 2 h at 1 h after HI + 10 mg/kg/12 h between 24 and 60 h) is safe and associated with: (i) reduction in magnetic resonance spectroscopy lactate/N-acetylaspartate (MRS Lac/sNAA); (ii) preservation of phosphorus MRS phosphocreatine/phosphate exchange pool (PCr/Epp); (iii) improved aEEG/EEG recovery and (iv) cytoprotection on immunohistochemistry. Male and female piglets underwent IA-HI by carotid artery occlusion and reduction in FiO2 to 6% at 4 h into Escherichia coli lipopolysaccharide sensitisation (2 µg/kg bolus + 1 µg/kg/h over 12 h). At 1 h after IA-HI, piglets were randomised to HI-saline (n = 12) or melatonin (n = 11). There were no differences in insult severity between groups. Target melatonin levels (15-30 mg/L) were achieved within 3 h and blood ethanol levels were <0.25 g/L. At 60 h, compared to HI-saline, melatonin was associated with a reduction of 0.197 log10 units (95% CrI [-0.366, -0.028], Pr(sup) 98.8%) in basal-ganglia and thalamic Lac/NAA, and 0.257 (95% CrI [-0.676, 0.164], Pr(sup) 89.3%) in white matter Lac/NAA. PCr/Epp was higher in melatonin versus HI-saline (Pr(sup) 97.6%). Melatonin was associated with earlier aEEG/EEG recovery from 19 to 24 h (Pr(sup) 95.4%). Compared to HI-saline, melatonin was associated with increased NeuN+ cell density (Pr(sup) 99.3%) across five of eight regions and reduction in TUNEL-positive cell death (Pr(sup) 89.7%). This study supports the translation of melatonin to early-phase clinical trials. Melatonin is protective following IA-HI where HT is not effective. These data guide the design of future dose-escalation studies in the next phase of the translational pipeline.


Assuntos
Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica , Melatonina , Animais , Melatonina/farmacologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Suínos , Feminino , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511288

RESUMO

Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.


Assuntos
Citrulinação , Vesículas Extracelulares , Recém-Nascido , Humanos , Animais , Suínos , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Convulsões/metabolismo
3.
Pediatr Res ; 94(5): 1675-1683, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37308684

RESUMO

BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT: This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.


Assuntos
Hipóxia-Isquemia Encefálica , Lactente , Humanos , Animais , Suínos , Hipóxia-Isquemia Encefálica/terapia , Neuroproteção , Biomarcadores , Encéfalo/metabolismo , Animais Recém-Nascidos
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361903

RESUMO

Over 10 million people worldwide live with Parkinson's disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination-which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs.


Assuntos
Citrulinação , Doença por Corpos de Lewy , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Projetos Piloto , Histonas/metabolismo , Doença por Corpos de Lewy/metabolismo , Corpos de Lewy/metabolismo , Isoenzimas/metabolismo , Hidrolases/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955829

RESUMO

PADs are a group of calcium-dependent enzymes that play key roles in inflammatory pathologies and have diverse roles in cancers. PADs cause irreversible post-translational modification of arginine to citrulline, leading to changes in protein function in different cellular compartments. PAD isozyme diversity differs throughout phylogeny in chordates, with five PAD isozymes in mammals, three in birds, and one in fish. While the roles for PADs in various human cancers are mounting (both in regards to cancer progression and epigenetic regulation), investigations into animal cancers are scarce. The current pilot-study therefore aimed at assessing PAD isozymes in a range of animal cancers across the phylogeny tree. In addition, the tissue samples were assessed for total protein deimination and histone H3 deimination (CitH3), which is strongly associated with human cancers and also indicative of gene regulatory changes and neutrophil extracellular trap formation (NETosis). Cancers were selected from a range of vertebrate species: horse, cow, reindeer, sheep, pig, dog, cat, rabbit, mink, hamster, parrot, and duck. The cancers chosen included lymphoma, kidney, lung, testicular, neuroendocrine, anaplastic, papilloma, and granulosa cell tumour. Immunohistochemical analysis revealed that CitH3 was strongly detected in all of the cancers assessed, while pan-deimination detection was overall low. Both PAD2 and PAD3 were the most predominantly expressed PADs across all of the cancers assessed, while PAD1, PAD4, and PAD6 were overall expressed at lower, albeit varying, levels. The findings from this pilot study provide novel insights into PAD-mediated roles in different cancers across a range of vertebrate species and may aid in the understanding of cancer heterogeneity and cancer evolution.


Assuntos
Citrulinação , Neoplasias , Animais , Cães , Epigênese Genética , Histonas/metabolismo , Cavalos , Humanos , Isoenzimas/metabolismo , Mamíferos/metabolismo , Neoplasias/genética , Projetos Piloto , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/metabolismo , Coelhos , Ovinos , Suínos , Vertebrados/metabolismo
6.
Pediatr Res ; 91(6): 1416-1427, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050269

RESUMO

BACKGROUND: Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS: Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS: Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS: We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT: Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Hipotermia/patologia , Hipotermia Induzida/métodos , Hipóxia , Inflamação/patologia , Isquemia/patologia , Lipopolissacarídeos , Suínos
7.
Front Synaptic Neurosci ; 13: 709301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504417

RESUMO

Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.

8.
Brain Commun ; 3(1): fcaa211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604569

RESUMO

As therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-h hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (<48 h old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 h) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) triple therapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 h after hypoxia-ischaemia. Hypoxia-ischaemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia-ischaemia for melatonin (15-30 mg/l) and within 30 min of erythropoietin administration (maximum concentration 10 000 mU/ml). Compared to hypothermia + vehicle, we observed faster amplitude-integrated EEG recovery from 25 to 30 h with hypothermia + melatonin (P = 0.02) and hypothermia + erythropoietin (P = 0.033) and from 55 to 60 h with triple therapy (P = 0.042). Magnetic resonance spectroscopy lactate/N-acetyl aspartate peak ratio was lower at 66 h in hypothermia + melatonin (P = 0.012) and triple therapy (P = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (P = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (P = 0.014) and periventricular white matter (P = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (P < 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude-integrated EEG recovery, amelioration of lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin double therapy was in association with EEG recovery and was most effective in promoting oligodendrocyte survival. Triple therapy provided no added benefit over the double therapies in this 72-h study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer-term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia-ischaemia.

9.
Cytotherapy ; 23(6): 521-535, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33262073

RESUMO

BACKGROUND: With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS: The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS: A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. RESULTS: HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS: After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.


Assuntos
Hipotermia Induzida , Células-Tronco Mesenquimais , Animais , Humanos , Animais Recém-Nascidos , Asfixia/terapia , Modelos Animais de Doenças , Suínos , Cordão Umbilical
10.
Sci Rep ; 10(1): 3898, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127612

RESUMO

With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study's objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1-13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1-13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm2) compared to HT (123.8 cells/mm2) (p = 0.0003) and HT+V (97.5 cells/mm2) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15-30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.


Assuntos
Asfixia/terapia , Etanol/farmacologia , Hipotermia Induzida , Melatonina/farmacologia , Animais , Animais Recém-Nascidos , Asfixia/tratamento farmacológico , Asfixia/metabolismo , Asfixia/fisiopatologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroencefalografia/efeitos dos fármacos , Melatonina/farmacocinética , Melatonina/uso terapêutico , Suínos , Distribuição Tecidual
11.
Front Immunol ; 10: 2610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849925

RESUMO

Background: Hypoxic-ischemic (HI) encephalopathy is a major cause of neonatal mortality and morbidity, with a global incidence of 3 per 1,000 live births. Intrauterine or perinatal complications, including maternal infection, constitute a major risk for the development of neonatal HI brain damage. During HI, inflammatory response and oxidative stress occur, causing subsequent cell death. The presence of an infection sensitizes the neonatal brain, making it more vulnerable to the HI damage. Currently, therapeutic hypothermia is the only clinically approved treatment available for HI encephalopathy, however it is only partially effective in HI alone and its application in infection-sensitized HI is debatable. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HI. Such an alternative is targeting the complement system. Properdin, which is involved in stabilization of the alternative pathway convertases, is the only known positive regulator of alternative complement activation. Absence of the classical pathway in the neonatal HI brain is neuroprotective. However, there is a paucity of data on the participation of the alternative pathway and in particular the role of properdin in HI brain damage. Objectives: Our study aimed to validate the effect of global properdin deletion in two mouse models: HI alone and LPS-sensitized HI, thus addressing two different clinical scenarios. Results: Our results indicate that global properdin deletion in a Rice-Vannucci model of neonatal HI and LPS-sensitized HI brain damage, in the short term, clearly reduced forebrain cell death and microglial activation, as well as tissue loss. In HI alone, deletion of properdin reduced TUNEL+ cell death and microglial post-HI response at 48 h post insult. Under the conditions of LPS-sensitized HI, properdin deletion diminished TUNEL+ cell death, tissue loss and microglial activation at 48 h post-HI. Conclusion: Overall, our data suggests a critical role for properdin, and possibly also a contribution in neonatal HI alone and in infection-sensitized HI brain damage. Thus, properdin can be considered a novel target for treatment of neonatal HI brain damage.


Assuntos
Hipóxia-Isquemia Encefálica/imunologia , Neuroproteção , Properdina/fisiologia , Animais , Proteínas do Sistema Complemento/fisiologia , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Interleucina-6/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia
12.
Front Physiol ; 10: 1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798458

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 µg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin's anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.

13.
Sci Rep ; 9(1): 10184, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308390

RESUMO

Co-existing infection/inflammation and birth asphyxia potentiate the risk of developing neonatal encephalopathy (NE) and adverse outcome. In a newborn piglet model we assessed the effect of E. coli lipopolysaccharide (LPS) infusion started 4 h prior to and continued for 48 h after hypoxia on brain cell death and systemic haematological changes compared to LPS and hypoxia alone. LPS sensitized hypoxia resulted in an increase in mortality and in brain cell death (TUNEL positive cells) throughout the whole brain, and in the internal capsule, periventricular white matter and sensorimotor cortex. LPS alone did not increase brain cell death at 48 h, despite evidence of neuroinflammation, including the greatest increases in microglial proliferation, reactive astrocytosis and cleavage of caspase-3. LPS exposure caused splenic hypertrophy and platelet count suppression. The combination of LPS and hypoxia resulted in the highest and most sustained systemic white cell count increase. These findings highlight the significant contribution of acute inflammation sensitization prior to an asphyxial insult on NE illness severity.


Assuntos
Encefalopatias/fisiopatologia , Lesões Encefálicas/fisiopatologia , Hipóxia-Isquemia Encefálica/metabolismo , Animais , Animais Recém-Nascidos , Asfixia/metabolismo , Asfixia Neonatal/fisiopatologia , Encéfalo/metabolismo , Encefalopatias/metabolismo , Lesões Encefálicas/metabolismo , Morte Celular , Modelos Animais de Doenças , Escherichia coli , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Masculino , Suínos , Substância Branca/metabolismo
14.
Pediatr Res ; 86(6): 699-708, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31357208

RESUMO

BACKGROUND: Neuroprotection from therapeutic hypothermia (HT) is incomplete, therefore additional strategies are necessary to improve long-term outcomes. We assessed the neuroprotective efficacy of magnesium sulfate (MgSO4) bolus and infusion over 48 h plus HT in a piglet model of term neonatal encephalopathy (NE). METHODS: Fifteen newborn piglets were randomized following hypoxia-ischemia (HI) to: (i) MgSO4 180 mg/kg bolus and 8 mg/kg/h infusion with HT (Mg+HT) or (ii) HT and saline 0.5 ml/h (HT). Treatments were initiated 1 h post-HI; HT administered for 12 h (33.5 °C). HI was performed by transient carotid occlusion and inhalation of 6% O2 for 20-25 min. Primary outcomes included aEEG, magnetic resonance spectroscopy (MRS) at 24, and 48 h, and immunohistochemistry. RESULTS: MgSO4 bolus and infusion was well tolerated (no hypotension) and doubled serum magnesium (0.72 vs 1.52 mmol/L) with modest (16%) rise in CSF. In Mg+HT compared to HT, there was overall reduced cell death (p = 0.01) and increased oligodendrocytes (p = 0.002). No improvement was seen on aEEG recovery (p = 0.084) or MRS (Lac/NAA; PCr/Pi; NTP/epp) (p > 0.05) at 48 h. CONCLUSION: Doubling serum magnesium with HT was safe; however, the small incremental benefit of Mg+HT compared to HT is unlikely to translate into substantive long-term improvement. Such an incremental effect might justify further study of MgSO4 in combination with multiple therapies.


Assuntos
Animais Recém-Nascidos , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/terapia , Sulfato de Magnésio/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Gasometria , Terapia Combinada , Eletroencefalografia , Hipóxia-Isquemia Encefálica/fisiopatologia , Magnésio/sangue , Magnésio/líquido cefalorraquidiano , Masculino , Suínos
15.
Front Physiol ; 10: 282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941062

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS: Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS: Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION: Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.

16.
Neurobiol Dis ; 121: 240-251, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300675

RESUMO

Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ±â€¯SD peak plasma melatonin levels after the first infusion were 0.0014 ±â€¯0.0012 mg/l in the HT + V group, 3.97 ±â€¯1.53 mg/l in the HT + Mel-5 group and 16.8 ±â€¯8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.


Assuntos
Encéfalo/efeitos dos fármacos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/metabolismo , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Sus scrofa , Pesquisa Translacional Biomédica
17.
Dev Comp Immunol ; 92: 1-19, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395876

RESUMO

Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.


Assuntos
Citrulinação , Complemento C3/metabolismo , Complemento C4/metabolismo , Proteínas de Peixes/metabolismo , Linguado/imunologia , Desiminases de Arginina em Proteínas/metabolismo , Animais , Evolução Biológica , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Homeostase , Imunidade , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/genética , Proteômica , Transcriptoma
18.
Nat Commun ; 9(1): 3505, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158522

RESUMO

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Assuntos
Argininossuccinato Liase/metabolismo , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/terapia , Animais , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/terapia , Citrulina/metabolismo , Terapia Genética , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/terapia , Fígado/citologia , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo/genética , Estresse Nitrosativo/fisiologia
19.
PLoS One ; 13(7): e0199890, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969470

RESUMO

Neonatal hypoxic-ischaemic encephalopathy (HIE) is major cause of neonatal mortality and morbidity. Therapeutic hypothermia is standard clinical care for moderate hypoxic-ischaemic (HI) brain injury, however it reduces the risk of death and disability only by 11% and 40% of the treated infants still develop disabilities. Thus it is necessary to develop supplementary therapies to complement therapeutic hypothermia in the treatment of neonatal HIE. The modified Rice-Vannucci model of HI in the neonatal mouse is well developed and widely applied with different periods of hypothermia used as neuroprotective strategy in combination with other agents. However, different studies use different periods, time of initiation and duration of hypothermia following HI, with subsequent varying degrees of neuroprotection. So far most rodent data is obtained using exposure to 5-6h of therapeutic hypothermia. Our aim was to compare the effect of exposure to three different short periods of hypothermia (1h, 1.5h and 2h) following HI insult in the postnatal day 7 C57/Bl6 mouse, and to determine the shortest period providing neuroprotection. Our data suggests that 1h and 1.5h of hypothermia delayed by 20min following a 60min exposure to 8%O2 do not prove neuroprotective. However, 2h of hypothermia significantly reduced tissue loss, TUNEL+ cell death and microglia and astroglia activation. We also observed improved functional outcome 7 days after HI. We suggest that the minimal period of cooling necessary to provide moderate short term neuroprotection and appropriate for the development and testing of combined treatment is 2h.


Assuntos
Modelos Animais de Doenças , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/terapia , Neuroproteção , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
20.
J Physiol ; 596(23): 6043-6062, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29873394

RESUMO

KEY POINTS: This study identifies phosphorylated extracellular signal-regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic-ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up-regulation was prevented with systemic injection of the mitogen-activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre- and post-HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell-specific interference with ERK activity could result in stronger neuroprotection. ABSTRACT: Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular signal-regulated kinase (ERK) isoforms and their mitogen-activated protein kinase kinase (MEK)-dependent phosphorylation in HI has previously been explored but remains unresolved at cellular level. This is pertinent given the growing awareness of the role of non-neuronal cells in neuroprotection. Using a modified Rice-Vannucci model of HI in the neonatal mouse we observed time- and cell-dependent ERK phosphorylation (pERK), with strongly up-regulated pERK immunoreactivity first in periventricular white matter axons within 15-45 min of HI, followed by forebrain astrocytes and neurons (1-4 h post-HI), and return to baseline by 16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor SL327 on neonatal HI-brain damage following HI alone (30 or 60 min) or lipopolysaccharide (LPS)-sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death and associated microglial activation at 48 h post-HI. We then explored the effects of cell-specific ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and microglial activation in grey matter following both HI alone or LPS-sensitised HI. ERK1 deletion attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced a reverse response, with a 3- to 4-fold increase in microglial activation and cell death. Our data suggest a cell-specific and time-dependent role of ERK in neonatal HI, with a predominant, neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly neuroprotective.


Assuntos
Astrócitos/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...