Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 114(47): 12522-30, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21049987

RESUMO

Two analogous Schiff bases, (S,E)-2-((1-hydroxy-3-methyl-1,1-diphenylbutan-2-ylimino)methyl)phenol (1) and (S,Z)-2-hydroxy-6-((1-hydroxy-3-methyl-1,1-diphenylbutan-2-ylamino)methylene)cyclohexa-2,4-dienone (2), exist in the solid state as phenol-imine and keto-amine tautomers, respectively. Their crystal structures were solved using the X-ray diffraction method. Sample 1 forms orthorhombic crystals of space group P2(1)2(1)2(1), while 2 forms monoclinic crystals of space group P2(1). In each sample, one molecule is in the asymmetric unit of the crystal structure. One-dimensional and two-dimensional solid state NMR techniques were used for structure assignment and for inspection of the (13)C and (15)N δ(ii) of the chemical shift tensor (CST) values. NMR study indicates that the span (Ω = δ(11)-δ(33)) and the skew (κ = 3(δ(22)-δ(iso)/Ω) are extremely sensitive to change in the tautomeric form of the Schiff bases. Theoretical calculations of NMR shielding parameters for 1 and 2 and a model compound with reduced aliphatic residue were performed using the GIAO method with B3LYP functional and 6-311++g(d,p) basis sets. From comparative analysis of the experimental and theoretical parameters, it was concluded that the position of hydrogen in the intramolecular bridge has tremendous influence on (13)C and (15)N CST parameters. Inspection of Ω and κ parameters allowed for the establishment of the nature of the hydrogen bonding and the assignment of the equilibrium proton position in the intramolecular bridges in the solid state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...