Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(22): 23573-23583, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854549

RESUMO

This study delves into the green synthesis and multifaceted applications of three types of carbon quantum dots (CQDs), namely, CQDs-1, CQDs-2, and CQDs-3. These CQDs were innovatively produced through a gentle pyrolysis process from distinct plant-based precursors: genipin with glucose for CQDs-1, genipin with extracted gardenia seeds for CQDs-2, and genipin with whole gardenia seeds for CQDs-3. Advanced analytical techniques, including X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR), were employed to detail the CQDs' structural and surface characteristics, revealing their unique functional groups and surface chemistries. The study further explores the CQDs' bioimaging potential, where confocal fluorescence microscopy evidenced their swift uptake by Escherichia coli bacteria, indicating their suitability for bacterial imaging. These CQDs were also applied in the synthesis of gold nanoparticles (AuNPs), acting as reducing agents and stabilizers. Among these, CQD3-AuNPs were distinguished by their remarkable stability and catalytic efficiency, achieving a 99.7% reduction of 4-nitrophenol to 4-aminophenol in just 10 min and maintaining near-complete reduction efficiency (99.6%) after 60 days. This performance notably surpasses that of AuNPs synthesized using sodium citrate, underscoring the exceptional capabilities of CQD3-AuNPs. These insights pave the way for leveraging CQDs and CQD-stabilized AuNPs in bacterial imaging and catalysis, presenting valuable directions for future scientific inquiry and practical applications.

2.
ACS Omega ; 8(48): 46252-46260, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075742

RESUMO

Many countries have allowed farmers to feed ß-adrenergic receptor agonists, such as ractopamine (Rac), to animals to improve the quality of their meat. However, Rac consumption can cause health problems for humans; thus, detecting Rac in meat before its packaging is essential. Consequently, this study developed a simple and sensitive electrochemical sensor by modifying a glassy carbon electrode (GCE) with Nafion/silver nanoparticles (Nafion/AgNPs). When this electrochemical sensor is used to detect Rac, electrostatic interaction occurs between Nafion and Rac, and the AgNPs oxidize Rac; thus, the accumulation and electrochemical sensing of Rac are achieved. Differential pulse voltammetry indicated that the as-prepared Nafion/AgNP-GCE sensor exhibited suitable electrochemical sensing ability under optimum conditions (6.0 µL of 0.10% Nafion/AgNPs in a Britton-Robertson buffer solution with a pH of 1.8, an accumulation potential of -0.2 V, and a Rac accumulation duration of 300 s). Moreover, this sensor has an extremely low limit of detection and high sensitivity (1.60 × 10-3 ppm and 2.14 µA/ppm, respectively) in the Rac concentration range 7.50 × 10-3-1.00 ppm. The as-prepared sensor also exhibits satisfactory reproducibility and storage stability, with the corresponding relative standard deviations (RSDs) being 4.27% (n = 5) and 1.56% (n = 10), respectively. The proposed electrochemical sensor was successfully used to determine the Rac content in pig liver samples, with spiked recoveries of 95.2-101.8% and RSDs of 0.55-4.83% being achieved.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296883

RESUMO

In this work, we investigate theoretically the reflective polarization rotator in a silicon waveguide formed by periodically arranged rectangular air holes. The etched air holes generate the large birefringence for the waveguide. The effective refractive index of the non-etched waveguide is isotropic. The structure can be regarded as a stack of alternating birefringent waveplates and isotropic material similar to the folded Solc filter. The band structure of the stack of birefringent waveplates with isotropic background is calculated to confirm the fact that high reflection peaks in the reflection spectra of the waveguide result from the photonic bandgap. The polarization extinction ratio for the reflected light is 15.8 dB. The highest reflectivity of the device is 93.1%, and the device length is 9.21 µm. An ultra-wide operation bandwidth from 1450.3 to 1621.8 nm can be achieved.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889678

RESUMO

Photonic crystals possess metastructures with a unique dispersion relation. An integrated optical circuit plays a crucial role in quantum computing, for which miniaturized optical components can be designed according to the characteristics of photonic crystals. Because the stable light transmission mode for a square waveguide is transverse electric or transverse magnetic polarization, we designed a half-waveplate element with a photonic crystal that can rotate the polarization direction of the light incident on a waveguide by 90°. Using the dispersion relation of photonic crystals, the polarization rotation length and the optical axis's angle of deviation from the electric field in the eigenmode can be effectively calculated. Polarization rotators designed on the basis of photonic crystal structures can effectively reduce the insertion loss of components and exhibit favorable polarization rotation performance.

5.
Opt Express ; 25(6): 6076-6091, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28380963

RESUMO

We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

6.
Opt Express ; 16(19): 15069-73, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18795044

RESUMO

In this study, a hollow bent waveguide with distributed Bragg reflectors (DBR) in silicon substrate was presented theoretically and experimentally. We used the two-dimensional finite-difference time-domain method to simulate bending transmission efficiencies for arc- and cut-type 90 degrees -bent waveguides. The air core was embedded by Si(3)N(4)/SiO(2) multilayer. The multilayer stacks were deposited by using plasma-enhanced chemical vapor deposition on the top and bottom of air core. The lowest 90 degree bending loss is around 3.9dB for the arc-type bending waveguides and 0.8dB for cut-type bending waveguides, respectively. This waveguide demonstrates a possibility for higher density of integration in planar light wave circuits.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Silício/química , Simulação por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056601, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233776

RESUMO

The propagation of acoustic waves in a square-lattice phononic crystal slab consisting of a single layer of spherical steel beads in a solid epoxy matrix is studied experimentally. Waves are excited by an ultrasonic transducer and fully characterized on the slab surface by laser interferometry. A complete band gap is found to extend around 300 kHz, in good agreement with theoretical predictions. The transmission attenuation caused by absorption and band gap effects is obtained as a function of frequency and propagation distance. Well confined acoustic wave propagation inside a line-defect waveguide is further observed experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...