Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 579: 258-268, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592991

RESUMO

This study reports on the development of modified pyrogenic carbonaceous materials (PCMs) for recovering orthophosphate (PO4-P). The PCMs include softwood and hardwood biochars and a commercial granular activated carbon (GAC) that were modified by irreversible adsorption of the quaternary ammonium polymer, poly(diallyldimethylammonium) chloride (pDADMAC), which reverses electrokinetic charge and increases PO4-P sorption. MgO-doped biochars were prepared by a literature method for comparison. Imaging and spectroscopic analyses characterize pDADMAC coverage, MgO doping, and binding of PO4-P. At environmentally relevant concentrations, PO4-P sorption by the pDADMAC-treated biochars was ~100 times greater than that of the corresponding unmodified biochars, and was comparable to that of the corresponding MgO-doped biochars on a coating content basis. The pDADMAC-coated carbons bind PO4-P by ion exchange, while the MgO-doped biochars bind PO4-P principally by forming an amorphous Mg phosphate species. Susceptibility to competition from other relevant anions (Cl-, NO3-, HCO3-/CO32-, SO42-) and poultry and dairy manure extracts was moderate and comparable for the two types of modified softwood biochars. Sorption to the pDADMAC-treated biochars appears to be more reversible than to the MgO-doped biochars using stepwise water extraction. Greater reversibility may be advantageous for trapping and recycling phosphate.

2.
Environ Sci Nano ; 7(6): 1742-1758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33564464

RESUMO

In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.

3.
Environ Sci Nano ; 6(1): 180-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297195

RESUMO

The production of graphene-family nanomaterials (GFNs) has increased appreciably in recent years. Graphene oxide (GO) has been found to be the most toxic nanomaterial among GFNs and, to our knowledge, no studies have been conducted to model its fate and transport in the environment. Lab studies show that GO undergoes phototransformation in surface waters under sunlight radiation resulting in formation of photoreduced GO (rGO). In this study, the recently updated Water Quality Analysis Simulation Program (WASP8) is used to simulate time-dependent environmental exposure concentrations of GO and its major phototransformation product, rGO, for Brier Creek, GA, USA at two flow scenarios under a constant loading of GO to the river for a period of 20 years. Analysis shows that the degree of phototransformation is closely associated with river flow condition: up to of 40% of GO undergoes phototransformation at low flow condition, whereas only 2.5% of GO phototransformation occurs at mean flow condition. River flow and heteroaggregation exhibit a 'competing' effect in determining the formation of rGO heteroagglomerates. Mass fraction analysis indicates that the vast majority of rGO heteroagglomerates settle to the sediment layers due to the settling of suspended solids. Simulation of natural recovery after removal of the GO source suggests that free GO and rGO are the immediate contaminants of concern in the studied surface water system, while rGO heteroaggregated with suspended solids can have a long-term ecological impact on both the water column and sediments.

4.
NanoImpact ; 13: 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297468

RESUMO

The industrial use and widespread application of carbon-based nanomaterials have caused a rapid increase in their production over the last decades. However, toxicity of these materials is not fully known and is still being investigated for potential human and ecological health risks. Detecting carbon-based nanomaterials in the environment using current analytical methods is problematic, making environmental fate and transport modeling a practical way to estimate environmental concentrations and assess potential ecological risks. The Water Quality Analysis Simulation Program 8 (WASP8) is a dynamic, spatially resolved fate and transport model for simulating exposure concentrations in surface waters and sediments. Recently, WASP has been updated to incorporate processes for simulating the fate and transport of nanomaterials including heteroaggregation and phototransformation. This study examines the fate and transport of multiwalled carbon nanotubes (MWCNT), graphene oxide (GO) and reduced graphene oxide (rGO) in four aquatic ecosystems in the southeastern United States. Sites include a seepage lake, a coastal plains river, a piedmont river and an unstratified, wetland lake. A hypothetical 50-year release is simulated for each site-nanomaterial pair to analyze nanomaterial distribution between the water column and sediments. For all nanomaterials, 99% of the mass loaded moves though systems of high and low residence times without being heteroaggregated and deposited in the sediments. However, significant accumulation in the sediments does occur over longer periods of time. Results show that GO and rGO had the highest mass fraction in the water column of all four sites. MWCNT were found predominantly in the sediments of the piedmont river and seepage lake but were almost entirely contained in the water column of the coastal plains river and wetland lake. Simulated recovery periods following the release estimate 37+ years for lakes and 1-4 years for rivers to reduce sediment nanomaterial concentrations by 50% suggesting that carbon-based nanomaterials have the potential for long-term ecological effects.

5.
Environ Sci Nano ; 6(12): 3734-3744, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32218919

RESUMO

Increases in the production and applications of graphene oxide (GO), coupled with reports of its toxic effects, are raising concerns about its health and ecological risks. To better understand GO's fate and transport in aquatic environments, we investigated its reactivity with three major reactive oxygen species (ROS): HO˙, 1O2, and O2˙-. Second-order degradation rate constants were calculated on the loss of dissolved organic carbon (DOC) and steady-state concentration of individual ROS species. Absolute second-order rate constants were determined by competition kinetics to be 6.24 × 104, 8.65 × 102, and 0.108 mg-C-1 L s-1 for HO˙, 1O2, and O2˙-, respectively. Photoreduced GO products had a similar reactivity to HO˙ as GO, with rate constants comparable to polycyclic aromatic compounds, but about two times higher than dissolved organic matter on a per carbon basis. Reaction with HO˙ resulted in decomposition of GO, with loss of color and formation of photoluminescent products. In contrast, reaction with 1O2 showed no effect on DOC, UV-vis spectra or particle size, while reaction with O2˙- slightly reduced GO. These results demonstrate that interactions with ROS will affect GO's persistence in water and should be considered in exposure assessment or environmental application of GO.

6.
Environ Sci Technol ; 48(19): 11330-6, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25171301

RESUMO

Promising developments in application of carbon nanotubes (CNTs) have raised concern regarding potential biological and environmental effects upon their inevitable release to the environment. Although some CNTs have been reported to generate reactive oxygen species (ROS) under light, limited information exists on ROS generation by these materials in the dark. In this study, generation of ROS was examined, initiated by electron transfer from biological electron donors through carboxylated single-walled carbon nanotubes (C-SWCNT) to molecular oxygen in water in the dark. In the presence of C-SWCNT, the oxidation of NADH (ß-nicotinamide adenine dinucleotide, reduced form) and DTTre (DL-dithiothreitol, reduced form) was confirmed by light absorbance shifts (340 nm to 260 nm during oxidation of NADH to NAD(+), and increased light absorbance at 280 nm during oxidation of DTTre). Production of superoxide anion (O2(•-)) was detected by its selective reaction with a tetrazolium salt (NBT(2+)), forming a formazan product that is visible at 530 nm. A modified acid-quenched N,N-diethyl-p-phenylenediamine (DPD) assay was used to measure the accumulation of H2O2 in C-SWCNT suspensions containing O2 and NADH. In the same suspensions (i.e., containing C-SWCNT, NADH, and O2), pBR322 DNA plasmid was cleaved, although •OH was not detected when using •OH scavenging molecular probes. These results indicate that the oxidation of electron donors by C-SWCNT can be a light-independent source of ROS in water, and that electron shuttling through CNTs to molecular oxygen may be a potential mechanism for DNA damage by this specific CNT and potentially other carbon-based nanomaterials.


Assuntos
Nanotubos de Carbono/química , Espécies Reativas de Oxigênio/química , Água/química , Ácidos Carboxílicos/química , Transporte de Elétrons , Peróxido de Hidrogênio/química , Luz , NAD/química , Oxirredução , Oxigênio/química , Superóxidos , Sais de Tetrazólio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...