Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 53(51): 14216-20, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25384922

RESUMO

Nanocomposites of tantalum-based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV-driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long-term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.

2.
Anal Chem ; 80(16): 6178-89, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18616279

RESUMO

Acetylation of proteins on specific lysine residues by acetyltransferase enzymes is a post-translational modification for biologically relevant regulation. In this study, we proposed a strategy to determine the in vitro acetylation sites of proteins by tracing isotope-labeled acetyl groups using mass spectrometry. Isotope-labeled and unlabeled acetyl groups transferred onto the substrates in vitro result in a specific "mass difference" that can be measured by MS analysis and utilized for localization of potential acetylated peptide signals. The identification of acetylation site is facilitated by conducting MS/MS experiments on those selected signals. Acetylation reactions of substrates were performed in the presence of acetyltransferase and equal molar of isotope-labeled acetyl coenzyme A ([(13)C2-2-D3]-acetyl-CoA) and unlabeled acetyl-CoA. After enzymatic digestion, the resulting peptide mixture was fractionated by off-line, reversed-phase high-pressure liquid chromatography and the accurate mass measurement of peptides was achieved by a quadrupole/time-of-flight mass spectrometer. Signals with 5-Da (or their multiples) mass differences and equal responses were selected out by program computation. Those potential acetylated peptide signals were subjected to MS/MS analyses for determination of acetylation sites. We have used histone H3 peptide (aa 1-20), histone H2B peptide (aa 1-21), histone H2A, and histone H2B proteins as the model compounds to demonstrate the applicability of this analytical scheme for the characterization of in vitro acetylation sites.


Assuntos
Acetilcoenzima A/química , Cromatografia Líquida/métodos , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Marcação por Isótopo , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetilação , Cromatografia Líquida de Alta Pressão , Histonas/análise , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA