Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Cardiol Rep ; 25(5): 325-331, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37074564

RESUMO

PURPOSE OF REVIEW: Heart failure leads to high mortality. The failing myocardium cannot often be rescued as heart regeneration is mostly compromised by disease progress. Stem cell therapy is a strategy under development to replace the impaired myocardium for recovery after heart injury. RECENT FINDINGS: Many studies have provided evidence of the beneficial effects of pluripotent stem cell-derived cardiomyocyte (CM) implantation into diseased rodent hearts, but there are still many challenges and limitations to replicating the same effects in large animal models for preclinical validation. In this review, we summarize progress in the use of pluripotent stem cell-derived CMs in large animal models based on three key parameters: species selection, cell source, and delivery. Most importantly, we discuss the current limitations and challenges that need to be solved to advance this technology to the translational stage.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Miócitos Cardíacos , Modelos Animais , Regeneração , Diferenciação Celular , Modelos Animais de Doenças
2.
J Biomed Sci ; 30(1): 13, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36803854

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have linked RRBP1 (ribosomal-binding protein 1) genetic variants to atherosclerotic cardiovascular diseases and serum lipoprotein levels. However, how RRBP1 regulates blood pressure is unknown. METHODS: To identify genetic variants associated with blood pressure, we performed a genome-wide linkage analysis with regional fine mapping in the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) cohort. We further investigated the role of the RRBP1 gene using a transgenic mouse model and a human cell model. RESULTS: In the SAPPHIRe cohort, we discovered that genetic variants of the RRBP1 gene were associated with blood pressure variation, which was confirmed by other GWASs for blood pressure. Rrbp1- knockout (KO) mice had lower blood pressure and were more likely to die suddenly from severe hyperkalemia caused by phenotypically hyporeninemic hypoaldosteronism than wild-type controls. The survival of Rrbp1-KO mice significantly decreased under high potassium intake due to lethal hyperkalemia-induced arrhythmia and persistent hypoaldosteronism, which could be rescued by fludrocortisone. An immunohistochemical study revealed renin accumulation in the juxtaglomerular cells of Rrbp1-KO mice. In the RRBP1-knockdown Calu-6 cells, a human renin-producing cell line, transmission electron and confocal microscopy revealed that renin was primarily retained in the endoplasmic reticulum and was unable to efficiently target the Golgi apparatus for secretion. CONCLUSIONS: RRBP1 deficiency in mice caused hyporeninemic hypoaldosteronism, resulting in lower blood pressure, severe hyperkalemia, and sudden cardiac death. In juxtaglomerular cells, deficiency of RRBP1 reduced renin intracellular trafficking from ER to Golgi apparatus. RRBP1 is a brand-new regulator of blood pressure and potassium homeostasis discovered in this study.


Assuntos
Proteínas de Transporte , Hiperpotassemia , Hipertensão , Hipoaldosteronismo , Animais , Humanos , Camundongos , Aldosterona , Óxido de Alumínio , Pressão Sanguínea , Estudo de Associação Genômica Ampla , Homeostase , Hiperpotassemia/complicações , Hipoaldosteronismo/complicações , Potássio , Renina/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia
3.
Adv Healthc Mater ; 12(8): e2201708, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36455286

RESUMO

The intricate functionalities of cellular membranes have inspired strategies for deriving and anchoring cell-surface components onto solid substrates for biological studies, biosensor applications, and tissue engineering. However, introducing conformal and right-side-out cell membrane coverage onto planar substrates requires cumbersome protocols susceptible to significant device-to-device variability. Here, a facile approach for biomembrane functionalization of planar substrates is demonstrated by subjecting confluent cellular monolayer to intracellular hydrogel polymerization. The resulting cell-gel hybrid, herein termed GELL (gelated cell), exhibits extraordinary stability and retains the structural integrity, membrane fluidity, membrane protein mobility, and topology of living cells. In assessing the utility of GELL layers as a tissue engineering feeder substrate for stem cell maintenance, GELL feeder prepared from primary mouse embryonic fibroblasts not only preserves the stemness of murine stem cells but also exhibits advantages over live feeder cells owing to the GELL's inanimate, non-metabolizing nature. The preparation of a xeno-free feeder substrate devoid of non-human components is further shown with HeLa cells, and the resulting  HeLa GELL feeder effectively sustains the growth and stemness of both murine and human induced pluripotent stem cells. The study highlights a novel bio-functionalization strategy that introduces new opportunities for tissue engineering and other biomedical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Fibroblastos , Células HeLa , Células Alimentadoras/metabolismo , Diferenciação Celular
4.
Theranostics ; 12(17): 7390-7403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438478

RESUMO

Rationale: Gut microbiota plays a crucial role in cancer development and treatment. Studies show that although the gut microbiota is able to promote tumor growth, its presence also improves the efficacy of cancer treatment such as immunotherapy. To date, understanding of the potential impact of the gut microbiota on other treatment modalities such as cancer nanomedicine is still limited. In this study, we aimed to establish the relationship between gut microbiota and cancer nanomedicine, which can potentially open a new path in cancer treatment that combines gut microbiota modulation along with nanotherapeutics. Methods: Mice bearing 4T1 triple-negative breast cancer cells were subjected to gut microbiota modulation by antibiotics (ABX) treatment in the drinking water. Mice given normal water was used for control. The effects of ABX treatment towards gut bacteria was studied by RT-qPCR and 16S next generation sequencing of fecal samples. The mice were then subjected to liposomal doxorubicin (LipoDox) treatment and the amount of nanotherapeutics that accumulated in the tumors was quantified. For therapeutic efficacy, the mice were subjected to ABX treatment and given three injections of LipoDox or saline, while the tumor growth was monitored throughout. Results: Analysis of fecal bacterial content showed that ABX treatment resulted in depletion of gut microbiota. Quantification of LipoDox content revealed significantly increased accumulation in ABX tumor compared to control. Compared to LipoDox treatment alone, we found that combined gut microbiota depletion and LipoDox treatment resulted in augmented long-term anti-tumor efficacy and significantly improved median survival compared to LipoDox only (control vs ABX = 58.5 vs 74 days, p = 0.0002, n = 10 for both groups), with two mice surviving until the end of the experimental end point without experiencing relapse. We also identified the increase in vascular permeability of ABX-treated tumors correlated to for improved therapeutic efficacy and outcome. Conclusion: We showed that gut microbiota depletion led to enhanced tumor vascular permeability, which allowed a larger amount of LipoDox nanoparticles to accumulate in the tumor, leading to better long-term effects. Our results suggest that gut microbiota modulation may be exploited in combination with available nanomedicine-based therapeutics to improve cancer diagnosis, therapeutic efficacy and outcome.


Assuntos
Microbioma Gastrointestinal , Nanomedicina , Camundongos , Animais , Recidiva Local de Neoplasia , Doxorrubicina
5.
Sci Rep ; 11(1): 16354, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381129

RESUMO

Stroke is a common cause of death worldwide and leads to disability and cognitive dysfunction. Ischemic stroke and hemorrhagic stroke are major categories of stroke, accounting for 68% and 32% of strokes, respectively. Each year, 15 million people experience stroke worldwide, and the stroke incidence is rising. Epigenetic modifications regulate gene transcription and play a major role in stroke. Accordingly, histone deacetylase 1 (HDAC1) participates in DNA damage repair and cell survival. However, the mechanisms underlying the role of HDAC1 in stroke pathogenesis are still controversial. Therefore, we investigated the role of HDAC1 in stroke by using a rat model of endothelin-1-induced brain ischemia. Our results revealed that HDAC1 was deregulated following stroke, and its expressional level and enzymatic activity were decreased. We also used MS-275 to inhibit HDAC1 function in rats exposed to ischemic insult. We found that HDAC1 inhibition promoted the infarct volume, neuronal loss, DNA damage, neuronal apoptosis after stroke, and levels of reactive oxygen species and inflammation cytokines. Additionally, HDAC1 inhibition deteriorated the behavioral outcomes of rats with ischemic insult. Overall, our findings demonstrate that HDAC1 participates in ischemic pathogenesis in the brain and possesses potential for use as a therapeutic target.


Assuntos
Histona Desacetilase 1/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Epigênese Genética/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443638

RESUMO

Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Biomimética/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos
7.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33893103

RESUMO

The delivery of therapeutics through the circulatory system is one of the least arduous and less invasive interventions; however, this approach is hampered by low vascular density or permeability. In this study, by exploiting the ability of monocytes to actively penetrate into diseased sites, we designed aptamer-based lipid nanovectors that actively bind onto the surface of monocytes and are released upon reaching the diseased sites. Our method was thoroughly assessed through treating two of the top causes of death in the world, cardiac ischemia-reperfusion injury and pancreatic ductal adenocarcinoma with or without liver metastasis, and showed a significant increase in survival and healing with no toxicity to the liver and kidneys in either case, indicating the success and ubiquity of our platform. We believe that this system provides a new therapeutic method, which can potentially be adapted to treat a myriad of diseases that involve monocyte recruitment in their pathophysiology.


Assuntos
Carcinoma Ductal Pancreático , Cardiopatias , Neoplasias Pancreáticas , Traumatismo por Reperfusão , Carcinoma Ductal Pancreático/patologia , Cardiopatias/metabolismo , Humanos , Monócitos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico
8.
Molecules ; 24(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137787

RESUMO

Cardiovascular diseases have continued to remain a leading cause of mortality and morbidity worldwide. Poor proliferation capability of adult cardiomyocytes disables the heart from regenerating new myocardium after a myocardial ischaemia event and therefore weakens the heart in the long term, which may result in heart failure and death. Delivery of cardioprotective therapeutics soon after the event can help to protect the heart from further cell death and improve cardiac function, but delivery methods and potential side effects of these therapeutics may be an issue. Advances in nanotechnology, particularly nanoparticles for drug delivery, have enabled researchers to obtain better drug targeting capability, thus increasing the therapeutic outcome. Detailed study of nanoparticles in vivo is useful as it can provide insight for future treatments. Nanogel can help to create a more favourable environment, not only for a sustained delivery of therapeutics, but also for a better navigation of the therapeutics to the targeted sites. Finally, if the damage to the myocardium is too severe for drug treatment, nanopatch can help to improve cardiac function and healing by becoming a platform for pluripotent stem cell-derived cardiomyocytes to grow for the purpose of cell-based regenerative therapy.


Assuntos
Doenças Cardiovasculares/diagnóstico , Nanotecnologia/métodos , Animais , Humanos , Nanopartículas/uso terapêutico , Tamanho da Partícula , Distribuição Tecidual
9.
Sci Rep ; 7(1): 12265, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947828

RESUMO

Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) analogues are approved for treating type 2 diabetes, but are known to activate GLP-1R signaling globally and constitutively. Active compound N55, previously isolated from fenugreek, enhances the potency of GLP-1 without activating GLP-1R. Here we investigated if N55 lowers plasma glucose base on physiological levels of GLP-1. N55 was found to dose-dependently lower plasma glucose in non-fasted mice but not in the fasted mice, with the effect attenuated by GLP-1R antagonist exendin-(9-39) (Ex-9). On the other hand, when co-administered with dipeptidyl peptidase-IV (DPP4) -resistant [Aib8]-GLP-1(7-36) amide (GLP-1'), hypoglycemic response to N55 was observed in the fasted mice. This enhancement was also found to display dose dependency. N55 enhancement of the hypoglycemic and insulinotropic action of GLP-1' was eliminated upon Ex-9 treatment. Both exendin-4 (Ex-4) and DPP4-resistant GLP-1 mutant peptide ([Aib8, E22, E30]-GLP-1(7-36) amide) activated GLP-1R and improved glucose tolerance but the enhancement effect of N55 was not observed in vivo or in vitro. In conclusions, N55 lowers plasma glucose according to prandial status by enhancing the response of physiological levels of GLP-1 and is much less likely to disrupt tight regulation of GLP-1R signaling as compare to GLP-1 analogues.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Trigonella/química , Animais , Glicemia/análise , Relação Dose-Resposta a Droga , Hipoglicemiantes/isolamento & purificação , Camundongos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação
10.
Biomaterials ; 29(13): 2104-12, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18276001

RESUMO

Apart from the reported PLGA submicro- and microspheres with broad size distribution, we have successfully developed a methodology using nanoprecipitation to prepare different sizes of PLGA nanoparticles with narrow size distributions. The newly developed PLGA nanoparticles could be readily modified with hydrophilic biomaterials on their surface and entrap hydrophobic drugs into their interiors. The encapsulation of FITC inside PLGA nanoparticles displayed a controlled release of drug system. The surfaces of the FITC entrapped PLGA nanoparticles were conjugated with quantum dots to serve as bimodal imaging probes. For nuclear transport, combination of nuclear localization signal (NLS) and PLGA nanoparticles, PLGA nanoparticles could successfully enter into HeLa cells nuclei. From tissue uptake results, PLGA nanoparticles had more uptaken by brain and liver than other tissues. The iron oxide nanoparticles-conjugated PLGA nanoparticle showed high efficiency of relaxivities r2 and could be used as the powerful magnetic resonance imaging (MRI) agents.


Assuntos
Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Engenharia Biomédica , Células HeLa , Humanos , Ácido Láctico/farmacologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Especificidade de Órgãos/efeitos dos fármacos , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...