Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360874

RESUMO

Osteoarthritis (OA) is still a recalcitrant musculoskeletal disease on account of its complex biochemistry and mechanical stimulations. Apart from stimulation by external mechanical forces, the regulation of intracellular mechanics in chondrocytes has also been linked to OA development. Recently, visfatin has received significant attention because of the clinical finding of the positive correlation between its serum/synovial level and OA progression. However, the precise mechanism involved is still unclear. This study determined the effect of visfatin on intracellular mechanics and catabolism in human primary chondrocytes isolated from patients. The intracellular stiffness of chondrocytes was analyzed by the particle-tracking microrheology method. It was shown that visfatin damages the microtubule and microfilament networks to influence intracellular mechanics to decrease the intracellular elasticity and viscosity via glycogen synthase kinase 3ß (GSK3ß) inactivation induced by p38 signaling. Further, microtubule network destruction in human primary chondrocytes is predominantly responsible for the catabolic effect of visfatin on the cyclooxygenase 2 upregulation. The present study shows a more comprehensive interpretation of OA development induced by visfatin through biochemical and biophysical perspectives. Finally, the role of GSK3ß inactivation, and subsequent regulation of intracellular mechanics, might be considered as theranostic targets for future drug development for OA.


Assuntos
Condrócitos , Citocinas/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Nicotinamida Fosforribosiltransferase/fisiologia , Osteoartrite , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Microtúbulos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Cultura Primária de Células
2.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630668

RESUMO

Mechanical regulation is known as an important regulator in cancer progression and malignancy. High shear force has been found to inhibit the cell cycle progression and result in cell death in various cancer cells. Stearoyl-CoA desaturase (SCD)-1, one of the important lipogenic enzymes, has recently been indicated as a potential pharmaceutical target in cancer therapy. In this study, we determined whether the cell fate control of shear force stimulation is through regulating the SCD-1 expression in cancer cells. Human MG63 osteosarcoma cells were used in this study. 2 and 20 dynes/cm2 shear forces were defined as low and high intensities, respectively. A SCD-1 upregulation in human MG63 osteosarcoma cells under 20, but not 2, dynes/cm2 shear force stimulation was shown, and this induction was regulated by Smad1/5 and peroxisome proliferator-activated receptor δ (PPARδ) signaling. Moreover, gene knockdown of PPARδ and SCD-1 in human MG63 osteosarcoma cells attenuated the differentiation inhibition and resulted in much more cell death of high shear force initiation. The present study finds a possible auto-protective role of SCD-1 upregulation in high shear force-damaged human MG63 osteosarcoma cells. However, its detailed regulation in the cancer fate decision of high shear force should be further examined.


Assuntos
Osteossarcoma/metabolismo , Resistência ao Cisalhamento/fisiologia , Estearoil-CoA Dessaturase/metabolismo , Linhagem Celular Tumoral , Humanos , Lipogênese , PPAR delta/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/fisiologia , Estresse Mecânico , Ativação Transcricional
3.
Cell Biosci ; 10: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938471

RESUMO

BACKGROUND: Vascular calcification is the major reason for high mortality of cardiovascular complications for diabetes. Interleukin (IL)-1ß has been implicated in this pathogenesis, but its precise role and clinical evidence have not been clearly identified. Hence, this study was aimed to investigate whether high concentration of glucose (HG), which mimics the hyperglycemia environment, could initiate vascular calcification through NLRP3/IL-1ß inflammasome and the underlying mechanism. Recently, 6-shogaol, a major ginger derivate, has been elucidated its pharmaceutic role for various diseases. Therefore, the aims of this study also determined 6-shogaol effect in vascular calcification of HG initiation. RESULT: Human artery smooth muscle cells (HASMCs) were used in this study. Glucose concentrations at 5 and 25 mM were defined as normal and HG status, respectively. The results showed that HG could increase the NLRP3, cleaved caspase 1, and pro/mature IL-1ß levels to induce the expressions of bone-related matrix proteins and subsequent HASMC calcification. This process was regulated by Akt activation and reactive oxygen species (ROS) production. Moreover, 6-shogaol could inhibit the Akt/ROS signaling and NLRP3/caspase 1/IL-1ß inflammasome and hence attenuated HASMC calcification. CONCLUSIONS: This study elucidates the detailed mechanism of HG-initiated HASMC calcification through NLRP3/caspase 1/IL-1ß inflammasome and indicates a potential therapeutic role of 6-shogaol in vascular calcification complication of diabetes.

4.
PLoS One ; 10(12): e0144252, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26636769

RESUMO

Bone morphogenetic proteins (BMPs) play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. However, recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA) development. The aim of this study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism. We found that expression of BMP-2 mRNA, but not BMP-4, BMP-6, or BMP-7 mRNA, could be increased in human primary chondrocytes under leptin stimulation. Moreover, this BMP-2 induction was mediated through transcription factor-signal transducer and activator of transcription (STAT) 3 activation via JAK2-ERK1/2-induced Ser727-phosphorylation. Of note, histone deacetylases (HDACs) 3 and 4 were both involved in modulating leptin-induced BMP-2 mRNA expression through different pathways: HDAC3, but not HDAC4, associated with STAT3 to form a complex. Our results further demonstrated that the role of BMP-2 induction under leptin stimulation is to increase collagen II expression. The findings in this study provide new insights into the regulatory mechanism of BMP-2 induction in leptin-stimulated chondrocytes and suggest that BMP-2 may play a reparative role in regulating leptin-induced OA development.


Assuntos
Proteína Morfogenética Óssea 2/biossíntese , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/farmacologia , Osteoartrite/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Condrócitos/patologia , Feminino , Histona Desacetilases/metabolismo , Humanos , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoartrite/patologia , RNA Mensageiro/biossíntese , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA