Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(6): 5740-5750, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517388

RESUMO

Lung adenocarcinoma (LUAD) is the most frequent histological subtype of lung cancer, which is the most common malignant tumor and the main cause of cancer-related mortality globally. Recent reports revealed that long non-coding RNA (lncRNA) of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a crucial role in tumorigenesis and metastasis development in lung cancer. However, the contribution of MALAT1 genetic variants to the development of LUAD is unclear, especially in epidermal growth factor receptor (EGFR) mutation status. In this study, 272 LADC patients with different EGFR status were recruited to dissect the allelic discrimination of the MALAT1 polymorphisms at rs3200401, rs619586, and rs1194338. The findings of the study showed that MALAT1 polymorphisms rs3200401, rs619586, and rs1194338 were not associated to LUAD susceptibility; however, rs3200401 polymorphisms was significantly correlated to EGFR wild-type status and tumor stages in LUAD patients in dominant model (p=0.016). Further analyses using the datasets from The Cancer Genome Atlas (TCGA) revealed that lower MALAT1 mRNA levels were associated with the advanced stage, and lymph node metastasis in LADC patients. In conclusion, our results showed that MALAT1 rs3200401 polymorphisms dramatically raised the probability of LUAD development.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Relevância Clínica , Receptores ErbB/genética , Predisposição Genética para Doença , Pulmão , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética
3.
Gut Pathog ; 15(1): 28, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322488

RESUMO

BACKGROUND: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS: The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION: Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.

4.
Vet Pathol ; 57(6): 915-925, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016243

RESUMO

Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice (n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 (n = 31) and Swiss mice (n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.


Assuntos
Nefrite Intersticial , Infecções por Parvoviridae , Parvovirinae , Doenças dos Roedores , Animais , Rim , Camundongos , Camundongos Endogâmicos , Nefrite Intersticial/veterinária , Infecções por Parvoviridae/veterinária , Parvovirinae/patogenicidade
5.
Mol Cancer Res ; 17(8): 1759-1773, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164412

RESUMO

Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/patologia , Interleucina-17/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Neoplasias Cutâneas/patologia , Linfócitos T/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T/patologia , Microambiente Tumoral , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...