Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049706

RESUMO

Helical liquids, formed by time-reversal pairs of interacting electrons in topological edge channels, provide a platform for stabilizing topological superconductivity upon introducing local and nonlocal pairings through the proximity effect. Here, we investigate the effects of electron-electron interactions and phonons on the topological superconductivity in two parallel channels of such helical liquids. Interactions between electrons in different channels tend to reduce nonlocal pairing, suppressing the topological regime. Additionally, electron-phonon coupling breaks the self duality in the electronic subsystem and renormalizes the pairing strengths. Notably, while earlier perturbative calculations suggested that longitudinal phonons have no effect on helical liquids themselves to the leading order, our nonperturbative analysis shows that phonons can induce transitions between topological and trivial superconductivity, thereby weakening the stability of topological zero modes. Our findings highlight practical limitations in realizing topological zero modes in various systems hosting helical channels, including quantum spin Hall insulators, higher-order topological insulators, and their fractional counterparts recently observed in twisted bilayer systems.

2.
Drug Deliv ; 30(1): 2158964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587631

RESUMO

The purpose of this study was to develop poloxamer (P407)-based in-situ thermogellable hydrogels with reducing concentration of P407 by adding hypromellose (HPMC) and with enhancing mucoadhesion of resulting hydrogels by adding hyaluronic acid (HA) for prolonging ocular delivery of hydroxypropyl-ß-cyclodextrin (HPßCD)-solubilized testosterone (TES). Results demonstrated that 0.5% TES solution was successfully solubilized with adding 10% HPßCD. Non-gellable 13% P407 sol became in-situ gellable with adding 2.0-2.5% HPMC and mucoadhesibility was further imporved with adding 0.3% HA-L (low MW) or HA-H (high MW). Optimized 0.5% HPßCD-solubilized TES P407-based thermogellable hydrogels with enhancement of mucoadhesion for prolonging ocular delivery comprised 13% P407, 2.5% HPMC, and 0.3% HA-L or HA-H. Furthermore, rheological measurements under simulated eye blinking confirmed that non-thixotropic properties of optimized hydrogels could be spreaded evenly and retain a greater amount of drug-loaded hydrogels on the ocular surface for a longer period to prolong drug delivery. Compared with conventional eye drops, the prolonged residence time of optimized hydrogels from ex vivo and in vivo studies were observed, indicating relationships between rheological properties and in vivo performances. It was concluded that P407-based thermosensitive hydrogels with reducing concentration of P407 and enhancing mucoadhesion was successfully formulated by adding 2.5% HPMC and 0.3% HA in 13% P407 for potentially accomplishing effective clinical treatment of DED.


Assuntos
Ácido Hialurônico , Poloxâmero , Derivados da Hipromelose , 2-Hidroxipropil-beta-Ciclodextrina , Temperatura , Hidrogéis
3.
Phys Rev Lett ; 121(19): 196801, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468588

RESUMO

We propose a tune-free scheme to realize Kramers pairs of Majorana bound states in recently discovered higher-order topological insulators (HOTIs). We show that, by bringing two hinges of a HOTI into the proximity of an s-wave superconductor, the competition between local and crossed Andreev pairing leads to the formation of Majorana Kramers pairs, when the latter pairing dominates over the former. We demonstrate that such a topological superconductivity is stabilized by moderate electron-electron interactions. The proposed setup avoids the application of a magnetic field or local voltage gates, and requires weaker interactions compared with nonhelical nanowires.

4.
Biomaterials ; 106: 111-8, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27552321

RESUMO

The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Nanopartículas/administração & dosagem , Coroa de Proteína/química , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Aves , Ouro/administração & dosagem , Ouro/química , Nanopartículas/química , Engenharia de Proteínas/métodos , Resultado do Tratamento , Vacinas de Partículas Semelhantes a Vírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA