Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879724

RESUMO

Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.

2.
Am J Cancer Res ; 13(10): 4560-4578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970364

RESUMO

The high heterogeneity and low percentage of neuroendocrine cells in prostate cancer limit the utility of traditional bulk RNA sequencing and even single-cell RNA sequencing to find better biomarkers for early diagnosis and stratification. Re-clustering of specific cell-type holds great promise for identification of intra-cell-type heterogeneity. However, this has not yet been used in studying neuroendocrine prostate cancer heterogeneity. Neuroendocrine cluster(s) were individually identified in each castration-resistant prostate cancer specimen and combined for trajectory analysis. Three neuroendocrine states were identified. Neuroendocrine state 2 with the highest AR score was considered the initial starting state of neuroendocrine transdifferentiation. State 1 and state 3 with distinct high neuroendocrine scores and marker genes enriched in N-Myc and REST target genes, respectively, were considered as two different types of neuroendocrine differentiated cancer cells. These two states contained distinct groups of prostate cancer biomarkers and a strong distinguishing ability of normal versus cancerous prostate across different pathological grading was found in the N-Myc-associated state. Our data highlight the central role of N-Myc and REST in mediating lineage plasticity and classifying neuroendocrine phenotypes.

3.
Life (Basel) ; 11(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833108

RESUMO

BACKGROUND: Cockayne syndrome (CS) is a rare form of dwarfism that is characterized by progressive premature aging. CS is typically caused by mutations in the excision repair cross-complementing protein group 6 (ERCC6) gene that encodes the CS group B (CSB) protein. Using whole exome sequencing, we recently identified a novel homozygous missense mutation (Leu536Trp) in CSB in a Taiwanese boy with CS. Since the current database (Varsome) interprets this variant as likely pathogenic, we utilized a bioinformatic tool to investigate the impact of Leu536Trp as well as two other variants (Arg453Ter, Asp532Gly) in similar articles on the CSB protein structure stability. METHODS: We used iterative threading assembly refinement (I-TASSER) to generate a predictive 3D structure of CSB. We calculated the change of mutation energy after residues substitution on the protein stability using I-TASSER as well as the artificial intelligence program Alphafold. RESULTS: The Asp532Gly variant destabilized both modeled structures, while the Leu536Trp variant showed no effect on I-TASSER's model but destabilized the Alphafold's modeled structure. CONCLUSIONS: We propose here the first case of CS associated with a novel homozygous missense mutation (Leu536Trp) in CSB. Furthermore, we suggest that the Asp532Gly and Leu536Trp variants are both pathogenic after bioinformatic analysis of protein stability.

4.
Front Immunol ; 12: 638381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868265

RESUMO

While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Microglia/metabolismo , NADPH Oxidase 2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/imunologia
5.
J Antimicrob Chemother ; 74(6): 1503-1510, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830171

RESUMO

BACKGROUND: MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones. OBJECTIVES: Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance. METHODS: A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test. RESULTS: All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC. CONCLUSIONS: Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases/genética , Farmacorresistência Bacteriana , Infecções por Flavobacteriaceae/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
6.
J Surg Res ; 211: 30-38, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501128

RESUMO

BACKGROUND: Effectiveness of protein-bound polysaccharide K (PSK) during adjuvant chemotherapy in gastric cancer patients expressing programmed death-1 ligand 1 (PD-L1) has not been investigated. Investigating this might help in triaging candidates eligible to immunochemotherapy. MATERIALS AND METHODS: In total, 918 patients with stages II and III gastric cancer, undergoing curative gastrectomy, and receiving adjuvant chemotherapy were enrolled in a prospective database, and the patients were retrospectively reviewed. We classified those patients into four cohorts stratified by PD-L1 expression and PSK administration, namely PD-L1, PSK (-,+); PD-L1, PSK (-,-); PD-L1, PSK (+,+); and PD-L1, PSK (+,-). In addition, another independent cohort of 20 patients undergoing radical gastrectomy was prospectively recruited to check their immunological cells of sera before and 2 mo after PSK administration. RESULTS: PSK treatment was an independent prognostic factor for patient's overall survival (P = 0.020), whereas PD-L1 expression per se was not. Administration of PSK prolonged patient survival in stages IIIA and IIIB (P = 0.031) but not in stage II or stage IIIC. Patients with negative expression of PD-L1, treated with PSK had longer survival than those not treated with PSK (P = 0.033). PSK did not affect the survival of patients with positive expression of PD-L1, (P = 0.421). The percentages of natural killer and natural killer T (NKT) cells, but not Th1, Th17, Treg, or IFN-γ+/CD8+ T cells, were significantly increased in PD-L1 (-) patients treated with PSK. However, these findings were not evident in PD-L1 (+) patients. CONCLUSIONS: PSK treatment preferentially confers a survival gain for patients with stage IIIA/IIIB gastric cancer, especially in the PD-L1 (-) subpopulation.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Gastrectomia , Proteoglicanas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Adulto , Idoso , Antineoplásicos/uso terapêutico , Quimioterapia Adjuvante , Feminino , Fluoruracila/uso terapêutico , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/cirurgia , Resultado do Tratamento
7.
FASEB J ; 31(1): 47-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663861

RESUMO

Membrane fusions that occur during vesicle transport, virus infection, and tissue development, involve receptors that mediate membrane contact and initiate fusion and effectors that execute membrane reorganization and fusion pore formation. Some of these fusogenic receptors/effectors are preferentially recruited to lipid raft membrane microdomains. Therefore, major constituents of lipid rafts, such as stomatin, may be involved in the regulation of cell-cell fusion. Stomatin produced in cells can be released to the extracellular environment, either through protein refolding to pass across lipid bilayer or through exosome trafficking. We report that cells expressing more stomatin or exposed to exogenous stomatin are more prone to undergoing cell fusion. During osteoclastogenesis, depletion of stomatin inhibited cell fusion but had little effect on tartrate-resistant acid phosphatase production. Moreover, in stomatin transgenic mice, increased cell fusion leading to enhanced bone resorption and subsequent osteoporosis were observed. With its unique molecular topology, stomatin forms molecular assembly within lipid rafts or on the appositional plasma membranes, and promotes membrane fusion by modulating fusogenic protein engagement.-Lee, J.-H., Hsieh, C.-F., Liu, H.-W., Chen, C.-Y., Wu, S.-C., Chen, T.-W., Hsu, C.-S., Liao, Y.-H., Yang, C.-Y., Shyu, J.-F., Fischer, W. B., Lin, C.-H. Lipid raft-associated stomatin enhances cell fusion.


Assuntos
Fusão Celular , Regulação da Expressão Gênica/fisiologia , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Osteoclastos/fisiologia , Osteoporose
8.
PLoS One ; 8(4): e61133, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577199

RESUMO

According to the cancer stem cell (CSC) model, higher CD133 expression in tumor tissue is associated with metastasis and poor prognosis in colon cancer. As such, the CD133-positive (CD133(+)) subpopulation of cancer cells is believed to play a central role in tumor development and metastatic progression. Although CD133(+) cells are believed to display more CSC-like behavior and be solely responsible for tumor colonization, recent research indicates that CD133(-) cells from metastatic colon tumors not only also possess colonization capacity but also promote the growth of larger tumors in a mouse model than CD133(+) cells, suggesting that an alternative mechanism of metastasis exists. This study investigated this possibility by examining the cell viability, tumorigenicity, and proliferation and growth capacity of the CD133(+) and CD133(-) subpopulations of the SW620 cell line, a human metastatic colon cancer cell line, in both an in vitro cell model and an in vivo mouse model. While both SW620 (CD133-) and SW620(CD133+) cells were found to engage in bidirectional cell-type switching in reaction to exposure to environmental stressors, including hypoxia, a cell adhesion-free environment, and extracellular matrix stimulation, both in vitro and in vivo, CD133(-) cells were found to have a growth advantage during early colonization due to their greater resistance to proliferation inhibition. Based on these findings, a hypothetical model in which colon cancer cells engage in cell-type switching in reaction to exposure to environmental stressors is proposed. Such switching may provide a survival advantage during early colonization, as well as that explain previous conflicting observations.


Assuntos
Antígenos CD/metabolismo , Neoplasias do Colo/patologia , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Estresse Fisiológico , Antígeno AC133 , Animais , Antígenos CD/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/deficiência , Glicoproteínas/genética , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Peptídeos/deficiência , Peptídeos/genética , Fatores de Tempo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...