Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053345

RESUMO

M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To extend the finding, we herein validated that eHSP90α-induced M2-polarized macrophages exhibited a tumor-promoting activity and the promoted tumor tissues had significant increases in microvascular density but decreases in CD4+ T-cell level. We further investigated the signaling pathways occurring in eHSP90α-stimulated macrophages. When macrophages were exposed to eHSP90α, CD91 and toll-like receptor 4 (TLR4) functioned as the receptor/co-receptor for eHSP90α binding to recruit interleukin (IL)-1 receptor-associated kinases (IRAKs) and myeloid differentiation factor 88 (MyD88), and next elicited a canonical CD91/MyD88-IRAK1/4-IκB kinase α/ß (IKKα/ß)-nuclear factor-κB (NF-κB)/interferon regulatory factor 3 (IRF3) signaling pathway. Despite TLR4-MyD88 complex-associated activations of IKKα/ß, NF-κB and IRF3 being well-known as involved in macrophage M1-activation, our results demonstrated that the CD91-TLR4-MyD88 complex-associated IRAK1/4-IKKα/ß-NF-κB/IRF3 pathway was not only directly involved in M2-associated CD163, CD204, and IL-10 gene expressions but also required for downregulation of M1 inflammatory cytokines. Additionally, Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were recruited onto MyD88 to induce the phosphorylation and activation of the transcription factor signal transducer and activator of transcription-3 (STAT-3). The JAK2/TYK2-STAT-3 signaling is known to associate with tumor promotion. In this study, the MyD88-JAK2/TYK2-STAT-3 pathway was demonstrated to contribute to eHSP90α-induced macrophage M2-polarization by regulating the expressions of M1- and M2-related genes, proangiogenic protein vascular endothelial growth factor, and phagocytosis-interfering factor Sec22b.


Assuntos
Espaço Extracelular/química , Proteínas de Choque Térmico HSP90/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , TYK2 Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias , Neovascularização Fisiológica , Fagocitose , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
2.
Bioorg Chem ; 98: 103689, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171993

RESUMO

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinases/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Aurora Quinases/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Quinazolinas/administração & dosagem , Quinazolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
3.
Neuroimage ; 191: 337-349, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738207

RESUMO

Quantification of tissue magnetic susceptibility using MRI offers a non-invasive measure of important tissue components in the brain, such as iron and myelin, potentially providing valuable information about normal and pathological conditions during aging. Despite many advances made in recent years on imaging techniques of quantitative susceptibility mapping (QSM), accurate and robust automated segmentation tools for QSM images that can help generate universal and sharable susceptibility measures in a biologically meaningful set of structures are still not widely available. In the present study, we developed an automated process to segment brain nuclei and quantify tissue susceptibility in these regions based on a susceptibility multi-atlas library, consisting of 10 atlases with T1-weighted images, gradient echo (GRE) magnitude images and QSM images of brains with different anatomic patterns. For each atlas in this library, 10 regions of interest in iron-rich deep gray matter structures that are better defined by QSM contrast were manually labeled, including caudate, putamen, globus pallidus internal/external, thalamus, pulvinar, subthalamic nucleus, substantia nigra, red nucleus and dentate nucleus in both left and right hemispheres. We then tested different pipelines using different combinations of contrast channels to bring the set of labels from the multi-atlases to each target brain and compared them with the gold standard manual delineation. The results showed that the segmentation accuracy using dual contrasts QSM/T1 pipeline outperformed other dual-contrast or single-contrast pipelines. The dice values of 0.77 ±â€¯0.09 using the QSM/T1 multi-atlas pipeline rivaled with the segmentation reliability obtained from multiple evaluators with dice values of 0.79 ±â€¯0.07 and gave comparable or superior performance in segmenting subcortical nuclei in comparison with standard FSL FIRST or recent multi-atlas package of volBrain. The segmentation performance of the QSM/T1 multi-atlas was further tested on QSM images acquired using different acquisition protocols and platforms and showed good reliability and reproducibility with average dice of 0.79 ±â€¯0.08 to manual labels and 0.89 ±â€¯0.04 in an inter-protocol manner. The extracted quantitative magnetic susceptibility values in the deep gray matter nuclei also correlated well between different protocols with inter-protocol correlation constants all larger than 0.97. Such reliability and performance was ultimately validated in an external dataset acquired at another study site with consistent susceptibility measures obtained using the QSM/T1 multi-atlas approach in comparison to those using manual delineation. In summary, we designed a susceptibility multi-atlas tool for automated and reliable segmentation of QSM images and for quantification of magnetic susceptibilities. It is publicly available through our cloud-based platform (www.mricloud.org). Further improvement on the performance of this multi-atlas tool is expected by increasing the number of atlases in the future.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo , Substância Cinzenta , Processamento de Imagem Assistida por Computador/métodos , Adulto , Idoso , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conjuntos de Dados como Assunto , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
4.
EBioMedicine ; 36: 241-251, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30293817

RESUMO

BACKGROUND: Cdc7-Dbf4 is a conserved serine/threonine kinase that plays an important role in initiation of DNA replication and DNA damage tolerance in eukaryotic cells. Cdc7 has been found overexpressed in human cancer cell lines and tumor tissues, and the knockdown of Cdc7 expression causes an p53-independent apoptosis, suggesting that Cdc7 is a target for cancer therapy. Only a handful Cdc7 kinase inhibitors have been reported. All Cdc7 kinase inhibitors, including PHA-767491, were identified and characterized as ATP-competitive inhibitors. Unfortunately, these ATP-competitive Cdc7 inhibitors have no good effect on clinical trial. METHODS: Here, we have developed a novel drug-screening platform to interrupt the interaction between Cdc7 and Dbf4 based on Renilla reniformis luciferase (Rluc)-linked protein-fragment complementation assay (Rluc-PCA). Using drug repositioning approach, we found several promising Cdc7 inhibitors for cancer therapy from a FDA-approved drug library. FINDINGS: Our data showed that dequalinium chloride and clofoctol we screened inhibit S phase progression, accumulation in G2/M phase, and Cdc7 kinase activity. In addition, in vivo mice animal study suggests that dequalinium chloride has a promising anti-tumor activity in oral cancer. Interestingly, we also found that dequalinium chloride and clofoctol sensitize the effect of platinum compounds and radiation due to synergistic effect. In conclusion, we identified non-ATP-competitive Cdc7 kinase inhibitors that not only blocks DNA synthesis at the beginning but also sensitizes cancer cells to DNA damage agents. INTERPRETATION: The inhibitors will be a promising anti-cancer agent and enhance the therapeutic effect of chemotherapy and radiation for current cancer therapy. FUND: This work was supported by grants from the Ministry of Science and Technology, Ministry of Health and Welfare, and National Health Research Institutes, Taiwan.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Reposicionamento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos/química , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biomed Sci ; 25(1): 6, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29361943

RESUMO

BACKGROUND: Heme oxygenase (HO) catalyzes NADPH-dependent degradation of heme to liberate iron, carbon monoxide and biliverdin. The interaction between HO and cytochrome P450 reductase (CPR), an electron donor, is essential for HO activity. HO-1 is a stress-inducible isoform whereas HO-2 is constitutively expressed. HO-1 induction is commonly seen in cancers and impacts disease progression, supporting the possibility of targeting HO-1 for cancer therapy. METHODS: We employed a cell-based bioluminescence resonance energy transfer assay to screen compounds with ability to inhibit HO-1/CPR interaction. The effect of the identified compound on HO-1/CPR interaction was confirmed by pull down assay. Moreover, the anti-tumorigenic activity of the identified compound on HO-1-enhanced tumor growth and migration was assessed by trypan blue exclusion method and wound healing assay. RESULTS: Danthron was identified as an effective small molecule able to interfere with the interaction between HO-1 and CPR but not HO-2 and CPR. Additional experiments with structural analogues of danthron revealed that the positions of hydroxyl moieties significantly affected the potency of inhibition on HO-1/CPR interaction. Pull-down assay confirmed that danthron inhibited the interaction of CPR with HO-1 but not HO-2. Danthron suppressed growth and migration of HeLa cells with stable HO-1 overexpression but not mock cells. In contrast, anthrarufin, a structural analog with no ability to interfere HO-1/CPR interaction, exhibited no significant effect on HO-1-overexpressing HeLa cells. CONCLUSIONS: These findings demonstrate that danthron is an isoform-specific inhibitor for HO-1/CPR interaction and may serve as a lead compound for novel anticancer drug.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo
6.
Sci Rep ; 7(1): 12336, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951584

RESUMO

Influenza is an annual seasonal epidemic that has continually drawn public attentions, due to the potential death toll and drug resistance. Neuraminidase, which is essential for the spread of influenza virus, has been regarded as a valid target for the treatment of influenza infection. Although neuraminidase drugs have been developed, they are susceptible to drug-resistant mutations in the sialic-binding site. In this study, we established computational models (site-moiety maps) of H1N1 and H5N1 to determine properties of the 150-cavity, which is adjacent to the drug-binding site. The models reveal that hydrogen-bonding interactions with residues R118, D151, and R156 and van der Waals interactions with residues Q136, D151, and T439 are important for identifying 150-cavitiy inhibitors. Based on the models, we discovered three new inhibitors with IC50 values <10 µM that occupies both the 150-cavity and sialic sites. The experimental results identified inhibitors with similar activities against both wild-type and dual H274Y/I222R mutant neuraminidases and showed little cytotoxic effects. Furthermore, we identified three new inhibitors situated at the sialic-binding site with inhibitory effects for normal neuraminidase, but lowered effects for mutant strains. The results suggest that the new inhibitors can be used as a starting point to combat drug-resistant strains.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Influenza Humana/tratamento farmacológico , Simulação de Dinâmica Molecular , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/uso terapêutico , Sítios de Ligação/genética , Simulação por Computador , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Influenza Humana/virologia , Concentração Inibidora 50 , Mutação , Neuraminidase/química , Neuraminidase/genética , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética
7.
Oncotarget ; 7(52): 85917-85928, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27835586

RESUMO

The epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown remarkable benefits in non-small cell lung cancer (NSCLC) patients with drug-sensitive mutations in the EGFR gene. Responsive patients are usually continuously prescribed with TKIs until disease progression. Glucocorticoids (GCs) are potent homeostasis maintaining drugs and are frequently used in cancer patients to alleviate discomforts caused by anti-cancer therapies. Several previous studies reported that concomitant use of GCs may compromise the efficacy of chemo-therapeutics in patients with solid tumors. Little is known in the concomitant use of target therapy with GCs in treating NSCLC. In this study, we hypothesized that concomitant use of GCs in EGFR-TKI therapy may be detrimental and addressed this issue using cell cultures and xenograft studies followed by a retrospective population study based on data from the Taiwan national health insurance system. In cell cultures and xenograft studies, GCs were shown to unequally compromise the anti-cancer efficacy of TKIs in both PC9 and NCI-H1975 NSCLC cells models. In the retrospective population study, patients with similar disease status that were co-medicated with GCs had a significantly higher risk of disease progression.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Glucocorticoides/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 7(52): 86239-86256, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27863392

RESUMO

The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents. BPR1K871 showed potent anti-proliferative activities in MOLM-13 and MV4-11 AML cells (EC50 ~ 5 nM). Moreover, kinase profiling and cell-line profiling revealed BPR1K871 to be a potential multi-kinase inhibitor. Functional studies using western blot and DNA content analysis in MV4-11 and HCT-116 cell lines revealed FLT3 and AURKA/B target modulation inside the cells. In vivo efficacy in AML xenograft models (MOLM-13 and MV4-11), as well as in solid tumor models (COLO205 and Mia-PaCa2), led to the selection of BPR1K871 as a preclinical development candidate for anti-cancer therapy. Further detailed studies could help to investigate the full potential of BPR1K871 as a multi-kinase inhibitor.


Assuntos
Antineoplásicos/síntese química , Aurora Quinase A/antagonistas & inibidores , Descoberta de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Quinazolinas/síntese química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Masculino , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 124: 186-199, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27573544

RESUMO

Aurora kinases have emerged as important anticancer targets so that there are several inhibitors have advanced into clinical study. Herein, we identified novel indazole derivatives as potent Aurora kinases inhibitors by utilizing in silico fragment-based approach and knowledge-based drug design. After intensive hit-to-lead optimization, compounds 17 (dual Aurora A and B), 21 (Aurora B selective) and 30 (Aurora A selective) possessed indazole privileged scaffold with different substituents, which provide sub-type kinase selectivity. Computational modeling helps in understanding that the isoform selectivity could be targeted specific residue in the Aurora kinase binding pocket in particular targeting residues Arg220, Thr217 or Glu177.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Simulação por Computador , Desenho de Fármacos , Indazóis/química , Indazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/química , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
10.
J Biol Chem ; 291(37): 19299-311, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458013

RESUMO

Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases.


Assuntos
Imunidade Inata/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Micotoxinas/farmacologia , Patulina/farmacologia , Proteína Sequestossoma-1/imunologia , Animais , Células HEK293 , Humanos , Camundongos , Mitofagia/imunologia , Células RAW 264.7
11.
Onco Targets Ther ; 9: 2961-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27284246

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC) patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs. RESULTS: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits cell adhesion-related response and greatly enhances the cell-killing effects of EGFR TKI (gefitinib for the PC9 cells; afatinib for the H1975 cells) in NSCLC cells, which would otherwise escape the TKI-induced apoptosis. CONCLUSION: Results from this study indicate that NSCLC cells can employ the adhesion response as a survival pathway to survive under EGFR-targeted therapy. Simultaneous targeting of EGFR signaling and adhesion pathways would further boost the efficacy of EGFR-targeted therapy in NSCLC.

12.
Sci Rep ; 6: 21662, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916998

RESUMO

Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP's RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.


Assuntos
Antivirais/farmacologia , Curcumina/análogos & derivados , Vírus da Influenza A/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/genética , Células A549 , Antivirais/química , Curcumina/química , Curcumina/farmacologia , Humanos , Vírus da Influenza A/metabolismo , Mutagênese Sítio-Dirigida , Proteínas do Nucleocapsídeo , Estrutura Terciária de Proteína , RNA/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Proteínas do Core Viral/efeitos dos fármacos , Proteínas do Core Viral/metabolismo
13.
J Med Chem ; 58(19): 7807-19, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26348881

RESUMO

A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade , Triptofano Oxigenase/antagonistas & inibidores , Sítios de Ligação , Bases de Dados de Compostos Químicos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Triazóis/química , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo
14.
Sci Rep ; 5: 11702, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26118648

RESUMO

The inhibition of FMS-like tyrosine kinase 3 (FLT3) activity using small-molecule inhibitors has emerged as a target-based alternative to traditional chemotherapy for the treatment of acute myeloid leukemia (AML). In this study, we report the use of structure-based virtual screening (SBVS), a computer-aided drug design technique for the identification of new chemotypes for FLT3 inhibition. For this purpose, homology modeling (HM) of the DFG-in FLT3 structure was carried using two template structures, including PDB ID: 1RJB (DFG-out FLT3 kinase domain) and PDB ID: 3LCD (DFG-in CSF-1 kinase domain). The modeled structure was able to correctly identify known DFG-in (SU11248, CEP-701, and PKC-412) and DFG-out (sorafenib, ABT-869 and AC220) FLT3 inhibitors, in docking studies. The modeled structure was then used to carry out SBVS of an HTS library of 125,000 compounds. The top scoring 97 compounds were tested for FLT3 kinase inhibition, and two hits (BPR056, IC50 = 2.3 and BPR080, IC50 = 10.7 µM) were identified. Molecular dynamics simulation and density functional theory calculation suggest that BPR056 (MW: 325.32; cLogP: 2.48) interacted with FLT3 in a stable manner and could be chemically optimized to realize a drug-like lead in the future.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Homologia Estrutural de Proteína , Interface Usuário-Computador , Tirosina Quinase 3 Semelhante a fms/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Desenho Assistido por Computador , Desenho de Fármacos , Duplicação Gênica , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Teoria Quântica , Reprodutibilidade dos Testes , Alinhamento de Sequência , Termodinâmica , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
15.
Eur J Med Chem ; 100: 151-61, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26081023

RESUMO

Numerous FLT3 inhibitors have been explored as a viable therapy for the treatment of acute myeloid leukemia (AML). However, clinical data have been underwhelming due to incomplete inhibition of FLT3 or the emergence of resistant mutations treated with these older agents. We previously developed a series of 3-phenyl-1H-5-pyrazolylamine derivatives as highly potent and selective FLT3 inhibitors with good in vivo efficacy using an intravenous (IV) route. However, the poor bioavailability of these pyrazole compounds limits the development of these promising antileukemic compounds for clinical use. Herein, we describe a novel class of 5-phenyl-thiazol-2-ylamine compounds that are multi-targeted FLT3 inhibitors. From this class of compounds, compound 7h was very potent against AML cell lines and exhibited excellent oral efficacy in AML xenograft models. In addition, further studies demonstrated that compound 7h exhibited potent in vitro and in vivo activities against clinically relevant AC220 (3)-resistant kinase domain mutants of FLT3-ITD.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Mutação Puntual/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
Sci Rep ; 5: 10938, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077136

RESUMO

Tyrosine kinases regulate various biological processes and are drug targets for cancers. At present, the design of selective and anti-resistant inhibitors of kinases is an emergent task. Here, we inferred specific site-moiety maps containing two specific anchors to uncover a new binding pocket in the C-terminal hinge region by docking 4,680 kinase inhibitors into 51 protein kinases, and this finding provides an opportunity for the development of kinase inhibitors with high selectivity and anti-drug resistance. We present an anchor-based classification for tyrosine kinases and discover two type-C inhibitors, namely rosmarinic acid (RA) and EGCG, which occupy two and one specific anchors, respectively, by screening 118,759 natural compounds. Our profiling reveals that RA and EGCG selectively inhibit 3% (EGFR and SYK) and 14% of 64 kinases, respectively. According to the guide of our anchor model, we synthesized three RA derivatives with better potency. These type-C inhibitors are able to maintain activities for drug-resistant EGFR and decrease the invasion ability of breast cancer cells. Our results show that the type-C inhibitors occupying a new pocket are promising for cancer treatments due to their kinase selectivity and anti-drug resistance.


Assuntos
Antineoplásicos Fitogênicos/química , Receptores ErbB/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Motivos de Aminoácidos , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/classificação , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Produtos Biológicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Desenho de Fármacos , Descoberta de Drogas , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/classificação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Relação Estrutura-Atividade , Quinase Syk
17.
Schizophr Bull ; 41(1): 66-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25217482

RESUMO

BACKGROUND: Diffusion tensor imaging is a neuroimaging method that quantifies white matter (WM) integrity and brain connectivity based on the diffusion of water in the brain. White matter has been hypothesized to be of great importance in the development of schizophrenia as part of the dysconnectivity model. Childhood-onset schizophrenia (COS), is a rare, severe form of the illness that resembles poor outcome adult-onset schizophrenia. We hypothesized that COS would be associated with WM abnormalities relative to a sample of controls. METHODS: To evaluate WM integrity in this population 39 patients diagnosed with COS, 39 of their healthy (nonpsychotic) siblings, and 50 unrelated healthy volunteers were scanned using a diffusion tensor imaging (DTI) sequence during a 1.5 T MRI acquisition. Each DTI scan was processed via atlas-based analysis using a WM parcellation map, and diffeomorphic mapping that shapes a template atlas to each individual subject space. Fractional anisotropy (FA), a measure of WM integrity was averaged over each of the 46 regions of the atlas. Eleven WM regions were examined based on previous reports of WM growth abnormalities in COS. RESULTS: Of those regions, patients with COS, and their healthy siblings had significantly lower mean FA in the left and right cuneus as compared to the healthy volunteers (P < .005). Together, these findings represent the largest DTI study in COS to date, and provide evidence that WM integrity is significantly impaired in COS. Shared deficits in their healthy siblings might result from increased genetic risk.


Assuntos
Lobo Occipital/patologia , Esquizofrenia/patologia , Irmãos , Substância Branca/patologia , Adolescente , Anisotropia , Encéfalo/patologia , Estudos de Casos e Controles , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
18.
J Comput Aided Mol Des ; 29(1): 89-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344840

RESUMO

Furanopyrimidine 1 (IC50 = 273 nM, LE = 0.36, LELP = 10.28) was recently identified by high-throughput screening (HTS) of an in-house library (125,000 compounds) as an Aurora kinase inhibitor. Structure-based hit optimization resulted in lead molecules with in vivo efficacy in a mouse tumour xenograft model, but no oral bioavailability. This is attributed to "molecular obesity", a common problem during hit to lead evolution during which degradation of important molecular properties such as molecular weight (MW) and lipophilicity occurs. This could be effectively tackled by the right choice of hit compounds for optimization. In this regard, ligand efficiency (LE) and ligand efficiency dependent lipophilicity (LELP) indices are more often used to choose fragment-like hits for optimization. To identify hits with appropriate LE, we used a MW cut-off <250, and pyrazole structure to filter HTS library. Next, structure-based virtual screening using software (Libdock and Glide) in the Aurora A crystal structure (PDB ID: 3E5A) was carried out, and the top scoring 18 compounds tested for Aurora A enzyme inhibition. This resulted in the identification of a novel tetrahydro-pyrazolo-isoquinoline hit 7 (IC50 = 852 nM, LE = 0.44, LELP = 8.36) with fragment-like properties suitable for further hit optimization. Moreover, hit 7 was found to be selective for Aurora A (Aurora B IC50 = 35,150 nM) and the possible reasons for selectivity investigated by docking two tautomeric forms (2H- and 3H-pyrazole) of 7 in Auroras A and B (PDB ID: 4AF3) crystal structures. This docking study shows that the major 3H-pyrazole tautomer of 7 binds in Aurora A stronger than in Aurora B.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Aurora Quinase A/química , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Peso Molecular , Pirazóis/química
19.
PLoS One ; 9(11): e111331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412347

RESUMO

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3ß inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1ß) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.


Assuntos
Compostos de Anilina/administração & dosagem , Antivirais/administração & dosagem , Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/tratamento farmacológico , Hidroxibutiratos/administração & dosagem , Cloreto de Lítio/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Crotonatos , Citocinas/genética , Citocinas/metabolismo , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/imunologia , Humanos , Hidroxibutiratos/farmacologia , Cloreto de Lítio/farmacologia , Nitrilas , Toluidinas , Células Vero , Replicação Viral/efeitos dos fármacos
20.
Eur J Med Chem ; 83: 226-35, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24960626

RESUMO

Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 µM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 µM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Interface Usuário-Computador , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Aurora Quinase A/metabolismo , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...