Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018271

RESUMO

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Assuntos
Dióxido de Carbono , Mudança Climática , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Água/metabolismo
2.
Sci Adv ; 8(49): eabq6161, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475789

RESUMO

The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.

4.
Nat Rev Mol Cell Biol ; 23(10): 680-694, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35513717

RESUMO

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Brassinosteroides , Citocininas , Etilenos , Regulação da Expressão Gênica de Plantas , Giberelinas , Hormônios , Ácidos Indolacéticos , Plantas/genética , Estresse Fisiológico/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799443

RESUMO

Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Pressão de Vapor , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio , Dióxido de Carbono/metabolismo , Umidade , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Folhas de Planta/metabolismo , Proteínas Quinases/genética , Transdução de Sinais/fisiologia
6.
Plant Physiol ; 187(4): 2311-2322, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618035

RESUMO

Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.


Assuntos
Algoritmos , Fenômenos Bioquímicos , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais/fisiologia , Interpretação Estatística de Dados , Modelos Teóricos
8.
Plant J ; 105(2): 307-321, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33145840

RESUMO

The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Transdução de Sinais/fisiologia
9.
Elife ; 92020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32463362

RESUMO

Sucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.6-mediated phosphorylation of a defined serine residue in SNACS. ABA rapidly increases FRET efficiency in N. benthamiana leaf cells and Arabidopsis guard cells. Interestingly, protein kinase inhibition decreases FRET efficiency in guard cells, providing direct experimental evidence that basal SnRK2 activity prevails in guard cells. Moreover, in contrast to ABA, the stomatal closing stimuli, elevated CO2 and MeJA, did not increase SNACS FRET ratios. These findings and gas exchange analyses of quintuple/sextuple ABA receptor mutants show that stomatal CO2 signaling requires basal ABA and SnRK2 signaling, but not SnRK2 activation. A recent model that CO2 signaling is mediated by PYL4/PYL5 ABA-receptors could not be supported here in two independent labs. We report a potent approach for real-time live-cell investigations of stress signaling.


Assuntos
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Dióxido de Carbono/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas Biossensoriais/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
10.
Nat Commun ; 11(1): 12, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896774

RESUMO

Abiotic stresses, including drought and salinity, trigger a complex osmotic-stress and abscisic acid (ABA) signal transduction network. The core ABA signalling components are snf1-related protein kinase2s (SnRK2s), which are activated by ABA-triggered inhibition of type-2C protein-phosphatases (PP2Cs). SnRK2 kinases are also activated by a rapid, largely unknown, ABA-independent osmotic-stress signalling pathway. Here, through a combination of a redundancy-circumventing genetic screen and biochemical analyses, we have identified functionally-redundant MAPKK-kinases (M3Ks) that are necessary for activation of SnRK2 kinases. These M3Ks phosphorylate a specific SnRK2/OST1 site, which is indispensable for ABA-induced reactivation of PP2C-dephosphorylated SnRK2 kinases. ABA-triggered SnRK2 activation, transcription factor phosphorylation and SLAC1 activation require these M3Ks in vitro and in plants. M3K triple knock-out plants show reduced ABA sensitivity and strongly impaired rapid osmotic-stress-induced SnRK2 activation. These findings demonstrate that this M3K clade is required for ABA- and osmotic-stress-activation of SnRK2 kinases, enabling robust ABA and osmotic stress signal transduction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Arabidopsis/genética , Feminino , Mutação , Oócitos/metabolismo , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Transdução de Sinais , Xenopus laevis
11.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227607

RESUMO

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Assuntos
Anoctaminas/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Canais de Cálcio/ultraestrutura , Oryza/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Citoplasma/genética , Espectrometria de Massas , Potenciais da Membrana/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Água/química
12.
Proc Natl Acad Sci U S A ; 115(42): E9971-E9980, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30282744

RESUMO

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2 These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Nat Plants ; 3(10): 765-766, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28970562
14.
Pestic Biochem Physiol ; 131: 24-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27265823

RESUMO

Compared to other organophosphate-resistant and -susceptible (S) lines of Bactrocera dorsalis, the carboxylesterase (CBE) BdE5 in the naled-resistant (nal-r) line has been found to possess remarkable quantitative elevation. Our study attempts to identify the role of BdE5 in naled resistance, and we discovered several points of interest. Firstly, activity staining on native PAGE revealed that the percentage of flies with intensive BdE5 bands in the nal-r line was substantially higher than in the S line, indicating that the BdE5 band correlates with naled susceptibility. Secondly, in vitro and in vivo inhibition assays showed that BdE5 was inhibited by naled in both lines; under diagnostic doses of naled, the overall extent of inhibition on CBEs was much greater in the S line than in the nal-r line. Thirdly, NanoLC-nanoESi-MS/MS analysis used the NCBI database to identify and annotate BdE5 as an esterase FE4-like (XP_011200445.1) in B. dorsalis. Fourthly, rapid amplification of cDNA ends was used to obtain the 2012-bp full-length BdE5 cDNA, which contained an open reading frame of 1770bp and encoded a putative protein of 590 amino acid residues. Phylogenetic analysis revealed that BdE5 is a secreted ß-esterase (E clade) closely related to CG6414 (NP_570089), a CBE in Drosophila melanogaster. Finally, our relative quantification real-time PCR data showed a significant elevation in transcript levels of the BdE5 gene in nal-r line. Our results confirmed that BdE5 is correlated with naled resistance and provides further understanding about the identification and molecular characteristics of BdE5 in B. dorsalis.


Assuntos
Carboxilesterase/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Naled/farmacologia , Tephritidae/enzimologia , Animais , Carboxilesterase/isolamento & purificação , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Feminino , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Tephritidae/efeitos dos fármacos , Tephritidae/genética
15.
J Anesth ; 30(2): 328-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721826

RESUMO

It is challenging to establish one-lung ventilation in difficult airway patients. Surgical pneumothorax under spontaneous breathing to obtain well-collapsed lung is a feasible method for thoracic surgery. A 76-year-old man with right empyema was scheduled for decortication. The patient had limited mouth opening due to facial cellulitis extending from the left cheek to neck. Generally, lung isolation is achieved by double-lumen endotracheal tube or bronchial blocker. Double-lumen tube insertion is difficult for patients with limited mouth opening and right-side placement of bronchial blocker usually causes insufficient deflation. We introduce an alternative lung isolation technique by surgical pneumothorax under spontaneous breathing simply with an endotracheal tube placement. This technique has never been applied into the management of difficult one-lung ventilation. By this method, we provide an ideal surgical condition with safer, less time-consuming, and less skill-demanding anesthesia. It would be an alternative choice for management of one-lung ventilation in the difficult lung isolation patient.


Assuntos
Ventilação Monopulmonar/métodos , Pneumotórax Artificial/métodos , Procedimentos Cirúrgicos Torácicos/métodos , Idoso , Anestesia/métodos , Humanos , Intubação Intratraqueal/métodos , Pulmão , Masculino
16.
Bioessays ; 37(12): 1338-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577078

RESUMO

The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia
17.
Plant Physiol ; 163(2): 844-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24006285

RESUMO

This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and ß-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Nitratos/metabolismo , Floema/metabolismo , Desenvolvimento Vegetal , Xilema/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , DNA Bacteriano/genética , Cinética , Mutagênese Insercional/genética , Mutação/genética , Transportadores de Nitrato , Nitratos/farmacologia , Floema/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transporte Proteico/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Xilema/efeitos dos fármacos
18.
Trends Plant Sci ; 17(8): 458-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22658680

RESUMO

Plants need to acquire nitrogen (N) efficiently from the soil for growth. Nitrate is one of the major N sources for higher plants. Therefore, nitrate uptake and allocation are key factors in efficient N utilization. Membrane-bound transporters are required for nitrate uptake from the soil and for the inter- and intracellular movement of nitrate inside the plants. Four gene families, nitrate transporter 1/peptide transporter (NRT1/PTR), NRT2, chloride channel (CLC), and slow anion channel-associated 1 homolog 3 (SLAC1/SLAH), are involved in nitrate uptake, allocation, and storage in higher plants. Recent studies of these transporters or channels have provided new insights into the molecular mechanisms of nitrate uptake and allocation. Interestingly, several of these transporters also play versatile roles in nitrate sensing, plant development, pathogen defense, and/or stress response.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitrogênio/metabolismo , Floema/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Transporte Proteico , Solo/química , Xilema/metabolismo
19.
Opt Lett ; 35(6): 811-3, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20237607

RESUMO

A Ce(3+):YAG double-clad crystal fiber (DCF) visible emission was used as the light source for optical coherence tomography (OCT). The visible emission was produced from a 10 microm core DCF pumped by a diode laser. The broadband emission and short central wavelength of this light source enabled the realization of 1.5 microm axial resolution in air. The relatively clean spectrum reduced the side lobe of its point-spread function, and therefore facilitated the generation of a high-quality image with less crosstalk between adjacent image pixels. As a demonstration, an Aplocheilus lineatus goldfish was experimented on to map out the stroma of its cornea. This visible-light-based OCT can be utilized for industrial inspection as well as ocular applications.


Assuntos
Cério , Córnea , Carpa Dourada/anatomia & histologia , Lasers de Estado Sólido , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Animais , Fenômenos Ópticos
20.
Plant Cell ; 21(9): 2750-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19734434

RESUMO

Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, beta-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less (15)NO(3)(-) spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Floema/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transportadores de Nitrato , Floema/genética , RNA de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...