Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21241, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711860

RESUMO

Evidence indicates that sharp-wave ripples (SWRs) are primary network events supporting memory processes. However, some studies demonstrate that even after disruption of awake SWRs the animal can still learn spatial task or that SWRs may be not necessary to establish a cognitive map of the environment. Moreover, we have found recently that despite a deficit of sleep SWRs the APP/PS1 mice, a model of Alzheimer's disease, show undisturbed spatial reference memory. Searching for a learning-related alteration of SWRs that could account for the efficiency of memory in these mice we use convolutional neural networks (CNN) to discriminate pre- and post-learning 256 ms samples of LFP signals, containing individual SWRs. We found that the fraction of samples that were correctly recognized by CNN in majority of discrimination sessions was equal to ~ 50% in the wild-type (WT) and only 14% in APP/PS1 mice. Moreover, removing signals generated in a close vicinity of SWRs significantly diminished the number of such highly recognizable samples in the WT but not in APP/PS1 group. These results indicate that in WT animals a large subset of SWRs and signals generated in their proximity may contain learning-related information whereas such information seem to be limited in the AD mice.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Ondas Encefálicas , Hipocampo/fisiopatologia , Aprendizagem , Vias Neurais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Aprendizado Profundo , Modelos Animais de Doenças , Memória , Camundongos , Camundongos Transgênicos
2.
IEEE Trans Neural Netw Learn Syst ; 29(4): 832-844, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129188

RESUMO

Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...