Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Carbohydr Polym ; 257: 117639, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541664

RESUMO

A biocomposite coating comprising chitosan and ZnO deposited on a porous Ti oxide is developed to avoid orthopedic and dental implant-related infections. The coating comprised of an inner layer of nanoporous TiO2 and the outer layer of the chitosan matrix with ZnO nanoparticles. Microbiological tests show that chitosan coating is effective against Escherichia coli (E. coli), however, its ability to inhibit bacterial adhesion is very limited. A 1.2-fold increase in the antibacterial activity of chitosan/ZnO coating against E. coli was detected as compared to the chitosan coating alone, and the chitosan/ZnO efficiently inhibited biofilm formation. In addition, the chitosan/ZnO coating exhibited improved bioactivity compared to the chitosan coating. The improvement in antibacterial properties and bioactivity of the chitosan/ZnO coating is attributed to the release of Zn2+ ions. The critical force of scratching the chitosan/ZnO coating was approximately twice that of the chitosan coating. The potentiodynamic polarization results confirmed that the corrosion resistance of the implant with ZnO/chitosan/Ti structure was improved. In addition, cytocompatibility evaluation indicated that the chitosan/ZnO coating has good cytocompatibility in MG-63 cells as compared to pure Ti.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Escherichia coli/efeitos dos fármacos , Desenho de Prótese , Titânio/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Biofilmes , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Íons , Nanopartículas/química , Porosidade , Potenciometria , Próteses e Implantes , Propriedades de Superfície
2.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260230

RESUMO

Photoluminescent nanomaterials have immense potential for use in biological systems due to their excellent fluorescent properties and small size. Traditional semiconductor quantum dots are heavy-metal-based and can be highly toxic to living organisms, besides their poor photostability and low biocompatibility. Nano-sized carbon quantum dots and their surface-modified counterparts have shown improved characteristics for imaging purposes. We used 1,3, 6-trinitropyrene (TNP) and polyethylene glycol6000 (PEG6000) in a hydrothermal method to prepare functional polyethylene glycol6000/carbon nanodots (PEG6000/CDs) and analyzed their potential in fluorescent staining of different types of bacteria. Our results demonstrated that PEG6000/CDs stained the cell pole and septa of gram-positive bacteria B. Subtilis and B. thuringiensis but not those of gram-negative bacteria. The optimal concentration of these composite nanodots was approximately 100 ppm and exposure times varied across different bacteria. The PEG6000/CD composite had better photostability and higher resistance to photobleaching than the commercially available FM4-64. They could emit two wavelengths (red and green) when exposed to two different wavelengths. Therefore, they may be applicable as bioimaging molecules. They can also be used for differentiating different types of bacteria owing to their ability to differentially stain gram-positive and gram-negative bacteria.

3.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671904

RESUMO

Graphene oxide (GO) composites with various metal nanoparticles (NPs) are attracting increasing interest owing to their broad scope in biomedical applications. Here, microwave-assisted chemical reduction was used to deposit nano-silver and zinc oxide NPs (Ag and ZnO NPs) on the surface of reduced GO (rGO) at the following weight percentages: 5.34% Ag/rGO, 7.49% Ag/rGO, 6.85% ZnO/rGO, 16.45% ZnO/rGO, 3.47/34.91% Ag/ZnO/rGO, and 7.08/15.28% Ag/ZnO/rGO. These materials were tested for antibacterial activity, and 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO exhibited better antibacterial activity than the other tested materials against the gram-negative bacterium Escherichia coli K12. At 1000 ppm, both these Ag/ZnO/rGO composites had better killing properties against both E. coli K12 and the gram-positive bacterium Staphylococcus aureus SA113 than Ag/rGO and ZnO/rGO did. RedoxSensor flow cytometry showed that 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO decreased reductase activity and affected membrane integrity in the bacteria. At 100 ppm, these two composites affected membrane integrity more in E. coli, while 7.08/15.28% Ag/ZnO/rGO considerably decreased reductase activity in S. aureus. Thus, the 3.47/34.91% and 7.08%/15.28% Ag/ZnO/rGO nanocomposites can be applied not only as antibacterial agents but also in a variety of biomedical materials such as sensors, photothermal therapy, drug delivery, and catalysis, in the future.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/efeitos dos fármacos , Grafite/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Micro-Ondas , Nanocompostos/química , Tamanho da Partícula , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/química
4.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300336

RESUMO

Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA)-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM) broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO3, MnSO4, and Tween 80; and 10 µM pyridoxal phosphate (PLP) resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG), for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Fermentação , Levilactobacillus brevis/metabolismo , Probióticos/metabolismo , Ácido gama-Aminobutírico/biossíntese , Ácidos/toxicidade , Animais , Antibacterianos/farmacologia , Carbono/farmacologia , Fermentação/efeitos dos fármacos , Peixes/microbiologia , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Levilactobacillus brevis/efeitos dos fármacos , Levilactobacillus brevis/isolamento & purificação , Viabilidade Microbiana/efeitos dos fármacos , Nitrogênio/farmacologia , Temperatura , Água
5.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215550

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.


Assuntos
Bacillus/metabolismo , Ácido Poliglutâmico/análogos & derivados , Bacillus/classificação , Bacillus/genética , Fermentação , Regulação Bacteriana da Expressão Gênica , Microbiologia Industrial/métodos , Filogenia , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/genética
6.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099794

RESUMO

Hydrogels of 2-hydroxyethyl methacrylate/polyethylene glycol diacrylate (HEMA/PEGDA) have been extensively studied for their use in biomedical and pharmaceutical applications owing to their nontoxic and highly hydrophilic characteristics. Recently, cells immobilized by HEMA/PEGDA hydrogels have also been studied for enhanced production in fermentation. Hydrogel films of HEMA/PEGDA copolymer were generated by Ultraviolet (UV)-initiated photopolymerization. The hydrogel films were used to immobilize viable Lactobacillus brevis RK03 cells for the bioconversion of monosodium glutamate (MSG) to γ-aminobutyric acid (GABA). The mechanical properties and fermentation yields of the L. brevis RK03 cells immobilized on polyacrylate hydrogel films with different monomeric formulations were investigated. Fermentation was carried out in 75 mL de Man, Rogosa and Sharpe (MRS) medium containing various concentrations of MSG. We found that HEMA (93%)/PEGDA (3%) hydrogels (sample H) maximized GABA production. The conversion rate of MSG to GABA reached a maximum value of 98.4% after 240 h. Bioconversion activity gradually declined after 420 h to 83.8% after five cycles of semi-continuous fermentation. Our results suggest that HEMA (93%)/PEGDA (3%) hydrogels have great potential for use in GABA production via semi-continuous fermentation.


Assuntos
Células Imobilizadas/metabolismo , Hidrogéis/química , Levilactobacillus brevis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células Imobilizadas/citologia , Fermentação , Levilactobacillus brevis/citologia , Metacrilatos/química , Polietilenoglicóis/química , Polimerização , Glutamato de Sódio/metabolismo
7.
J Nanobiotechnology ; 15(1): 77, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100510

RESUMO

BACKGROUND: Zero-valent iron nanoparticles (ZVI NPs) have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown. RESULTS: In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407) but not against two gram-negative strains (Escherichia coli K12 and ATCC11634). Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI) staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm) concentration of ZVI NPs. CONCLUSION: Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.


Assuntos
Antibacterianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Bacillus thuringiensis/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Compostos Férricos/toxicidade , Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Antibacterianos/química , Bacillus subtilis/crescimento & desenvolvimento , Bacillus thuringiensis/crescimento & desenvolvimento , Carga Bacteriana , Técnicas Biossensoriais , Escherichia coli K12/crescimento & desenvolvimento , Compostos Férricos/química , Ferro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 18(4)2017 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-28397766

RESUMO

The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains.


Assuntos
Anti-Infecciosos/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/química , Cobre/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Especificidade da Espécie , Staphylococcus aureus/classificação , Staphylococcus aureus/crescimento & desenvolvimento , Difração de Raios X
9.
Int J Environ Res Public Health ; 13(4): 430, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27104546

RESUMO

The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.


Assuntos
Antivirais/farmacologia , Infecções por Birnaviridae/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Vírus da Doença Infecciosa da Bursa/efeitos dos fármacos , Prata/farmacologia , Animais , Infecções por Birnaviridae/virologia , Doenças do Gato/tratamento farmacológico , Doenças do Gato/virologia , Gatos , Técnicas de Cultura de Células , Infecções por Coronavirus/virologia , Feto , Grafite/farmacologia , Nanocompostos
10.
PLoS One ; 10(12): e0144306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26669836

RESUMO

The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.


Assuntos
Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Cromossomos Bacterianos/metabolismo , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Íons , Testes de Sensibilidade Microbiana , Oxirredução , Tamanho da Partícula , Padrões de Referência , Coloração e Rotulagem , Espectroscopia por Absorção de Raios X
11.
Front Microbiol ; 6: 1017, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557106

RESUMO

Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.

12.
PLoS One ; 10(6): e0128457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039692

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.


Assuntos
Antibacterianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Nanopartículas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Antibacterianos/química , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polissacarídeos Bacterianos/antagonistas & inibidores , Polissacarídeos Bacterianos/biossíntese , Poluentes do Solo/química , Óxido de Zinco/química
13.
Plant Physiol ; 160(3): 1642-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972705

RESUMO

This study demonstrated that foliar infection by Pseudomonas syringae pv tomato DC3000 induced malic acid (MA) transporter (ALUMINUM-ACTIVATED MALATE TRANSPORTER1 [ALMT1]) expression leading to increased MA titers in the rhizosphere of Arabidopsis (Arabidopsis thaliana). MA secretion in the rhizosphere increased beneficial rhizobacteria Bacillus subtilis FB17 (hereafter FB17) titers causing an induced systemic resistance response in plants against P. syringae pv tomato DC3000. Having shown that a live pathogen could induce an intraplant signal from shoot-to-root to recruit FB17 belowground, we hypothesized that pathogen-derived microbe-associated molecular patterns (MAMPs) may relay a similar response specific to FB17 recruitment. The involvement of MAMPs in triggering plant innate immune response is well studied in the plant's response against foliar pathogens. In contrast, MAMPs-elicited plant responses on the roots and the belowground microbial community are not well understood. It is known that pathogen-derived MAMPs suppress the root immune responses, which may facilitate pathogenicity. Plants subjected to known MAMPs such as a flagellar peptide, flagellin22 (flg22), and a pathogen-derived phytotoxin, coronatine (COR), induced a shoot-to-root signal regulating ALMT1 for recruitment of FB17. Micrografts using either a COR-insensitive mutant (coi1) or a flagellin-insensitive mutant (fls2) as the scion and ALMT1(pro):ß-glucuronidase as the rootstock revealed that both COR and flg22 are required for a graft transmissible signal to recruit FB17 belowground. The data suggest that MAMPs-induced signaling to regulate ALMT1 is salicylic acid and JASMONIC ACID RESISTANT1 (JAR1)/JASMONATE INSENSITIVE1 (JIN1)/MYC2 independent. Interestingly, a cell culture filtrate of FB17 suppressed flg22-induced MAMPs-activated root defense responses, which are similar to suppression of COR-mediated MAMPs-activated root defense, revealing a diffusible bacterial component that may regulate plant immune responses. Further analysis showed that the biofilm formation in B. subtilis negates suppression of MAMPs-activated defense responses in roots. Moreover, B. subtilis suppression of MAMPs-activated root defense does require JAR1/JIN1/MYC2. The ability of FB17 to block the MAMPs-elicited signaling pathways related to antibiosis reflects a strategy adapted by FB17 for efficient root colonization. These experiments demonstrate a remarkable strategy adapted by beneficial rhizobacteria to suppress a host defense response, which may facilitate rhizobacterial colonization and host-mutualistic association.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Receptores de Reconhecimento de Padrão/metabolismo , Rhizobiaceae/fisiologia , Aminoácidos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/farmacologia , Modelos Biológicos , Mutação/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Rhizobiaceae/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Mol Microbiol ; 83(6): 1210-28, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22329926

RESUMO

Exponentially growing Bacillus subtilis cultures are epigenetically differentiated into two subpopulations in which cells are either ON or OFF for σ(d) -dependent gene expression: a pattern suggestive of bistability. The gene encoding σ(D) , sigD, is part of the 31-gene fla/che operon where its location at the 3' end, 25 kb away from the strong P(fla/che) promoter, determines its expression level relative to a threshold. Here we show that addition of a single extra copy of the slrA gene in the chromosome inhibited σ(d) -dependent gene expression. SlrA together with SinR and SlrR reduced sigD transcript by potentiating a distance-dependent decrease in fla/che operon transcript abundance that was not mediated by changes in expression from the P(fla/che) promoter. Consistent with acting upstream of σ(D) , SlrA/SinR/SlrR was bypassed by artificial ectopic expression of sigD and hysteretically maintained for 20 generations by engaging the sigD gene at the native locus. SlrA/SinR/SlrR was also bypassed by increasing fla/che transcription and resulted in a hypersensitive output in flagellin expression. Thus, flagellin gene expression demonstrated hypersensitivity and hysteresis and we conclude that σ(d) -dependent gene expression is bistable.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Fator sigma/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Óperon , Regiões Promotoras Genéticas , Fator sigma/genética , Transcrição Gênica
15.
Mol Microbiol ; 81(4): 1092-108, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21736639

RESUMO

The bacterial flagellum is a complex molecular machine that is assembled by more than 30 proteins and is rotated to propel cells either through liquids or over solid surfaces. Flagellar gene expression is extensively regulated to co-ordinate flagellar assembly in both space and time. In Bacillus subtilis, the proteins of unknown function, SwrA and SwrB, and the alternative sigma factor σ(D) are required to activate expression of the flagellar filament protein, flagellin. Here we determine that in the absence of SwrA and SwrB, the phosphorylated form of the response regulator DegU inhibits σ(D) -dependent gene expression indirectly by binding to the P(flgM) promoter region and activating expression of the anti-sigma factor FlgM. We further demonstrate that DegU-P-dependent activation of FlgM is essential to inhibit flagellin expression when flagellar basal body assembly is disrupted. Regulation of FlgM is poorly understood outside of Salmonella, and differential control of FlgM expression may be a common means of coupling flagellin expression to flagellar assembly.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , Deleção de Genes , Ordem dos Genes , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma
16.
Arch Microbiol ; 189(6): 557-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18214442

RESUMO

The foodborne pathogen Bacillus cereus can form biofilms on various food contact surfaces, leading to contamination of food products. To study the mechanisms of biofilm formation by B. cereus, a Tn5401 library was generated from strain UW101C. Eight thousand mutants were screened in EPS, a low nutrient medium. One mutant (M124), with a disruption in codY, developed fourfold less biofilm than the wild-type, and its defective biofilm phenotype was rescued by complementation. Addition of 0.1% casamino acids to EPS prolonged the duration of biofilms in the wild-type but not codY mutant. When decoyinine, a GTP synthesis inhibitor, was added to EPS, biofilm formation was decreased in the wild-type but not the mutant. The codY mutant produced three times higher protease activity than the wild-type. Zymogram and SDS-PAGE data showed that production of the protease ( approximately 130 kDa) was repressed by CodY. Addition of proteinase K to EPS decreased biofilm formation by the wild-type. Using a dpp-lacZ fusion reporter system, it was shown that that the B. cereus CodY can sense amino acids and GTP levels. These data suggest that by responding to amino acids and intracellular GTP levels CodY represses production of an unknown protease and is involved in biofilm formation.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Bacillus cereus/química , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endopeptidase K/farmacologia , Dados de Sequência Molecular , Peso Molecular , Mutagênese Insercional , Óperon , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 73(22): 7225-31, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17921286

RESUMO

Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/fisiologia , Tensoativos/metabolismo , Transativadores/fisiologia , Animais , Bacillus cereus/genética , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Cromatografia em Camada Fina , Meios de Cultura/farmacologia , Eritrócitos/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Hemólise/efeitos dos fármacos , Espectrometria de Massas , Mutação , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tensoativos/farmacologia , Transativadores/genética
18.
Appl Environ Microbiol ; 72(7): 5089-92, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16820512

RESUMO

The DeltaplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Transativadores/metabolismo , Bacillus cereus/genética , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Meios de Cultura , Tensoativos/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...