Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(29): 38324-38333, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982664

RESUMO

With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.

2.
Adv Mater ; 36(31): e2404001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838735

RESUMO

High-dielectric-constant elastomers always play a critical role in the development of wearable electronics for actuation, energy storage, and sensing; therefore, there is an urgent need for effective strategies to enhance dielectric constants. The present methods mainly involve adding inorganic or conductive fillers to the polymer elastomers, however, the addition of fillers causes a series of problems, such as large dielectric loss, increased modulus, and deteriorating interface conditions. Here, the elastification of relaxor ferroelectric polymers is investigated through slight cross-linking, aiming to obtain intrinsic elastomers with high-dielectric constants. By cross-linking of the relaxor ferroelectric polymer poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) with a long soft chain cross-linker, a relaxor ferroelectric elastomer with an enhanced dielectric constant is obtained, twice that of the pristine relaxor ferroelectric polymer and surpassing all reported intrinsic elastomers. This elastomer maintains its high-dielectric constant over a wide temperature range and exhibits robust mechanical fatigue resistance, chemical stability, and thermal stability. Moreover, the ferroelectricity of the elastomer remains stable under strains up to 80%. This study offers a simple and effective way to enhance the dielectric constant of intrinsic elastomers, thus facilitating advancements in soft robots, biosensors, and wearable electronics.

3.
RSC Adv ; 14(17): 11771-11774, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617572

RESUMO

There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.

4.
Angew Chem Int Ed Engl ; 63(19): e202400511, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38488202

RESUMO

As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.

5.
J Am Chem Soc ; 146(8): 5614-5621, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354217

RESUMO

With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.

6.
ACS Appl Mater Interfaces ; 16(2): 2583-2592, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173080

RESUMO

Organic piezomaterials have attracted much attention because of their easy processing, lightweight, and mechanic flexibility properties. Developing new smart organic piezomaterials is highly required for new-generation electronic applications. Here, we found a novel organic piezomaterial of organic charge-transfer complex (CTC) consisting of dibenzcarbazole analogue (DBCz) and tetracyanoquinodimethane (TCNQ) in the molecular-level heterojunction stacking mode. The DBCz-TCNQ complex exhibited ferroelectric properties (the saturated polarization of ∼1.23 µC/cm2) at room temperature with a low coercive field. The noncentrosymmetric alignment (Pc space group) led to a spontaneous polarization of this architecture and thus was the origin of the piezoelectric behavior. Lateral piezoelectric nanogenerators (PENGs) based on the thermal evaporated CTC thin-film exhibited significant energy conversion behavior under mechanical agitation with a calculated piezoelectric coefficient (d31) of ∼33 pC/N. Furthermore, such a binary CTC thin-film constructed single-electrode PENG could show steady-state sensing performance to external stimuli as this flexible wearable device precisely detected physiological signals (e.g., finger bending, blink movement, carotid artery, etc.) with a self-powered supply. This work provides that the polar CTCs can act as efficient piezomaterials for flexible energy harvesting, conversion, and wearable sensing devices with a self-powered supply, enabling great potential in healthcare, motion detection, human-machine interfaces, etc.

7.
Sci Bull (Beijing) ; 68(22): 2691-2694, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37867060
8.
Science ; 381(6657): 540-544, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535722

RESUMO

Ferroelectrics are an integral component of the modern world and are of importance in electrics, electronics, and biomedicine. However, their usage in emerging wearable electronics is limited by inelastic deformation. We developed intrinsically elastic ferroelectrics by combining ferroelectric response and elastic resilience into one material by slight cross-linking of plastic ferroelectric polymers. The precise slight cross-linking can realize the complex balance between crystallinity and resilience. Thus, we obtained an elastic ferroelectric with a stable ferroelectric response under mechanical deformation up to 70% strain. This elastic ferroelectric exerts potentials in applications related to wearable electronics, such as elastic ferroelectric sensors, information storage, and energy transduction.

9.
Chemistry ; 28(16): e202104411, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107870

RESUMO

Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.

10.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684711

RESUMO

Elastic semiconductors are becoming more and more important to the development of flexible wearable electronic devices, which can be prepared by structural engineering design, blending, and the intrinsic elastification of organic semiconductors (intrinsically elastic organic semiconductor, IEOS). Compared with the elastic semiconductors prepared by structural engineering and blending, the IEOS prepared by organic synthesis has attracted numerous attentions for its solution processability and highly tunable chemical structures. For IEOSs, reasonable designs of synthetic routes and methods are the basis for realizing good mechanical and electrical properties. This brief review begins with a concise introduction of elastic semiconductors, then follows with several synthetic methods of IEOSs, and concludes the characteristics of each method, which provides guidance for the synthesis of IEOSs in the future. Furthermore, the properties of IEOSs are involved from the aspects of electrical, mechanical properties, and the applications of the IEOSs in elastic electronic devices. Finally, the challenge and an outlook which IEOSs are facing are presented in conclusion.

11.
ACS Omega ; 6(14): 9319-9333, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869912

RESUMO

In the past decade, the self-healing elastomers based on multiple hydrogen bonding have attracted ample attention due to their rich chemical structures, adjustable mechanical properties, fast healing speed, and high healing efficiency. Through prolonging the service life and fast recovery of the mechanical properties, self-healing elastomers can be potentially applied in the field of wearable electronics, electronic skins, motion tracking, and health monitoring. In this perspective, we will introduce the concept and classification of self-healing materials first, then the hydrogen bonds, and the corresponding position of hydrogen-bonding units in the polymer structures. We will also conclude the potential application of hydrogen bonding-based elastomers. Finally, a summary and outlook will be provided.

12.
Chem Rec ; 21(1): 116-132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169940

RESUMO

Recently, the development of polycyclic aromatic hydrocarbon (PAH)-based organic co-crystals has attracted increasing interest due to their unique packing modes, optic-electronic properties and various potential applications in electronic, optic-electronic and magnetic devices. In this account, we mainly discuss the definition, classification, packing patterns, preparation methods, and applications of PAH-based co-crystals. Specifically, the main categories of PAH-based organic co-crystals, the frequent methods to prepare them, three main packing patterns, their optical and electrical properties, and their potential applications will be presented. Finally, an outlook of this field is provided.

13.
J Am Chem Soc ; 141(13): 5130-5134, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860825

RESUMO

Four three-dimensional (3D) pyrene-fused N-heteroacenes (P1-P4) are designed and synthesized. From P1 to P4, their lengths are extended in an iterative way, where the thiadiazole unit can be reduced to diamine and the obtained diamines can be further condensed with the diketones with a thiadiazole unit. Compared to their two-dimensional counterparts, the solubility of these 3D pyrene-fused N-heteroacenes is improved by this 3D covalent linkage with two-dimensional units. The diameters of P1-P4 are 3.66, 6.06, 8.48 and 10.88 nm, respectively, and these 3D molecules are characterized by 1H, 13C and 2D NMR, MS, UV-vis, PL and CV spectra. Our strategy shows a promising way to large 3D pyrene-fused N-heteroacenes.

14.
Angew Chem Int Ed Engl ; 57(38): 12375-12379, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30070417

RESUMO

Three thiadiazoloquinoxaline-containing long pyrene-fused N-heteroacenes with 8, 13, and 18 rings were designed and synthesized. They show high electron affinities (EAs) of approximately 4.1 eV, which were derived from the onset of the reduction peaks in cyclic voltammetry. Crystal structure analysis revealed in-plane extension through close contacts between thiadiazole units as well as layered packing, enabling in-plane and interlayer electron transport. Organic field-effect transistor devices provided electron mobilities, which suggest a potential way to enhance the charge transport in long N-heteroacenes.

15.
RSC Adv ; 8(30): 16464-16469, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35540535

RESUMO

Two naphthalene diimide (NDI)-benzothiadiazole (BT) based conjugated polymers with high molecular weight, P1 and P2, were synthesized by introducing F atoms to modulate the electron-donating ability of the BT moiety. 3-Decyl-pentadecyl branched alkyl side chains were employed and expected to improve the molecular organization and device performance. Both polymers have excellent solubility in common organic solvents. UV-vis-NIR absorption and cyclic voltammetry indicate that the maximum absorption wavelength of P2 is blue-shifted and the HOMO energy level of P2 is decreased in comparison with P1. Two dimensional wide angle X-ray scattering of thin films revealed a similar organization of both polymers. A less balanced transport in field-effect transistors with increased electron mobility of 0.258 cm2 V-1 s-1 and lowered hole transport of 2.4 × 10-3 cm2 V-1 s-1 was found for P2. Polymer devices of P1 exhibited a balanced ambipolar transport, with a hole mobility of 0.073 cm2 V-1 s-1 and electron mobility of 0.086 cm2 V-1 s-1.

16.
Org Lett ; 19(23): 6300-6303, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135259

RESUMO

Thiadiazoloquinoxaline-fused naphthalenediimides (TQ-f-NDIs) are designed and synthesized. They show high electron affinities (EAs) of ∼4.5 eV. Organic field-effect transistor (OFET) devices, fabricated by dip-coating, provided maximum high electron mobilities of 0.03 cm2/(V·s) with an on/off ratio of 2 × 105.

17.
Chem Asian J ; 10(1): 116-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25252165

RESUMO

A new tetraazatetracene derivative, 2,3-[4,4'-bis(N,N-diphenylamino)benzyl]-5,12-bis[(triisopropylsilyl)ethynyl]-1,4,6,11-tetraazatetracene (TPAs-BTTT), displays rewritable multilevel memory behavior, which is probably induced by multielectron intramolecular charge transfer (CT).

18.
Chem Asian J ; 9(3): 779-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24382807

RESUMO

N-substituted heteroacenes have been widely used as electroactive layers in organic electronic devices, and only a few of them have been investigated in organic resistive memory devices. Here, a novel N-substituted heteroacene 2-(4'-(diphenylamino)phenyl)-4,11-bis((triisopropylsilyl)ethynyl)-1H-imidazo[4,5-b]phenazine (DBIP) has been designed, synthesized, and characterized. Sandwich-structure memory devices based on DBIP have been fabricated and the devices show non-volatile and stable memory character with good endurance performance.

19.
Sci Rep ; 3: 1084, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23330065

RESUMO

The past decades have witnessed the development of many technologies based on nanoionics, especially lithium-ion batteries (LIBs). Now there is an urgent need for developing LIBs with good high-rate capability and high power. LIBs with nanostructured electrodes show great potentials for achieving such goals. However, the nature of Li-ion transport behaviors within the nanostructured electrodes is not well clarified yet. Here, Li-ion transport behaviors in Li(x)CoO(2) nanograins are investigated by employing conductive atomic force microscopy (C-AFM) technique to study the local Li-ion diffusion induced conductance change behaviors with a spatial resolution of ~10 nm. It is found that grain boundary has a low Li-ion diffusion energy barrier and provides a fast Li-ion diffusion pathway, which is also confirmed by our first principles calculation. This information provides important guidelines for designing high performance LIBs from a point view of optimizing the electrode material microstructures and the development of nanoionics.

20.
J Am Chem Soc ; 134(42): 17408-11, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23035664

RESUMO

The uniformity of operating parameters in organic nonvolatile memory devices is very important to avoid false programming and error readout problems. In the present work, we fabricated an organic resistive-switching memory based on protonic-acid-doped polyazomethine (PA-TsOH), which demonstrates an excellent operative uniformity and multilevel storage capability. The deliberate tuning of the resistance states can be attributed to the electric-field-controlled molecular doping of the imine-containing polymers.


Assuntos
Compostos Azo/química , Dispositivos de Armazenamento em Computador , Polímeros/química , Prótons , Tiossemicarbazonas/química , Compostos Azo/síntese química , Polímeros/síntese química , Tiossemicarbazonas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA