Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(9): e22487, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947125

RESUMO

Necroptosis is defined as a novel programmed cell necrosis that is mediated by receptor interacting serine-threonine protein kinase 1 (RIPK1) and other related signals. Necrosis, apoptosis and inflammation are commonly considered as the leading mechanism in acute kidney injury (AKI) induced by gentamicin (GEN), which is a useful antibiotic for treating the infection of Gram-negative bacterial. However, the necroptosis in the pathogenesis of GEN-induced AKI is unknown. In this study, to investigate the process and function of necroptosis in GEN-induced AKI, NRK-52E and HK-2 cells and SD rats were used as the models. The necroptosis-related proteins, including RIPK1, RIPK3, mixed lineage kinase domain-like (MLKL) and phosphorylated MLKL (p-MLKL), were all increasing time-dependently when GEN was continuously given. By using the RIPK1 inhibitor necrostatin-1 (NEC-1) and RIPK3 inhibitor (CPD42), the GEN-induced toxicity of tubular cells was alleviated. Moreover, it was validated that GEN-induced cell apoptosis and inflammation were attenuated after treating with NEC-1 or CPD42, both in vivo and in vitro. When MLKL was knocked down by siRNA, NEC-1 and CPD42 can not further protect the damage of tubular cells by GEN. Although the using of pan-caspase inhibitor Z-VAD significantly decreased GEN-induced apoptosis, it enhanced necroptosis and slightly promoted the decreased cell viability in GEN-treated cells, with the protective effects weaker than NEC-1 or CPD42. Finally, in vitro minimum inhibitory concentration (MIC) tests and bacteriostatic ring studies showed that NEC-1 did not interfere with the antibiotic effects of GEN. Thus, suppressing necroptosis can serve as a promising strategy for the prevention of GEN-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda , Necroptose , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Antibacterianos/efeitos adversos , Apoptose , Gentamicinas/toxicidade , Inflamação/metabolismo , Necrose/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Biochem Biophys Res Commun ; 612: 91-98, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512462

RESUMO

Nephrotoxicity is a major adverse reaction of cisplatin-based chemotherapy. Organic cation transporter 2 (OCT2) which is located on the basement membrane of human proximal renal tubules is responsible for the renal accumulation of cisplatin and its nephrotoxicity. This study aimed to investigate the protective effect of PPIs to CP-induced nephrotoxicity. Three kinds of PPIs including lansoprazole, omeprazole and rabeprazole (Rab) were co-administrated with CP to mice. In addition, OCT2-overexpressed HEK293, HK-2 and A549 cells were co-incubated with CP and PPIs. The results showed that PPIs can attenuate CP-induced increase of CRE, BUN and histological damage of kidney. Among the three PPIs, Rab was found with a superior protective effect. It significantly reduced the accumulation of CP in OCT2-overexpressed HEK293 cells and in the renal cortex tissues of mice, but not in HK-2 cells. Moreover, Rab reduced the expression levels of cleaved-caspase-3, RIPK1, RIPK3, MLKL and p-MLKL and the apoptosis rate of renal tubular cells induced by CP in vivo, but not in HK-2 cells. However, Rab increased the viability of CP-treated cells in a concentration-dependent manner and attenuated CP-induced apoptosis and necroptosis in OCT2 over-expressed HEK293 cells. Finally, we demonstrated that Rab have no influence on the antitumor effect of CP. In conclusion, Rab attenuate CP-induced nephrotoxicity mainly through inhibiting OCT2-mediated CP uptake, without interfering with its anti-tumor property of inducing apoptosis and necroptosis.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Cisplatino/efeitos adversos , Células HEK293 , Humanos , Rim/metabolismo , Camundongos , Necroptose , Rabeprazol/efeitos adversos
3.
Theranostics ; 12(1): 324-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987648

RESUMO

Background: Macrophage infiltration around lipotoxic tubular epithelial cells (TECs) is a hallmark of diabetic nephropathy (DN). However, how these two types of cells communicate remains obscure. We previously demonstrated that LRG1 was elevated in the process of kidney injury. Here, we demonstrated that macrophage-derived, LRG1-enriched extracellular vesicles (EVs) exacerbated DN. Methods: We induced an experimental T2DM mouse model with a HFD diet for four months. Renal primary epithelial cells and macrophage-derived EVs were isolated from T2D mice by differential ultracentrifugation. To investigate whether lipotoxic TEC-derived EV (EVe) activate macrophages, mouse bone marrow-derived macrophages (BMDMs) were incubated with EVe. To investigate whether activated macrophage-derived EVs (EVm) induce lipotoxic TEC apoptosis, EVm were cocultured with primary renal tubular epithelial cells. Subsequently, we evaluated the effect of LRG1 in EVe by investigating the apoptosis mechanism. Results: We demonstrated that incubation of primary TECs of DN or HK-2 mTECs with lysophosphatidyl choline (LPC) increased the release of EVe. Interestingly, TEC-derived EVe activated an inflammatory phenotype in macrophages and induced the release of macrophage-derived EVm. Furthermore, EVm could induce apoptosis in TECs injured by LPC. Importantly, we found that leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EVe activated macrophages via a TGFßR1-dependent process and that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-enriched EVm induced apoptosis in injured TECs via a death receptor 5 (DR5)-dependent process. Conclusion: Our findings indicated a novel cell communication mechanism between tubular epithelial cells and macrophages in DN, which could be a potential therapeutic target.


Assuntos
Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo , Animais , Apoptose , Comunicação Celular , Linhagem Celular , Células Epiteliais/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...